Biochar, compost, iron oxide, manure, and inorganic fertilizer affect bioavailability of arsenic and improve soil quality of an abandoned arsenic-contaminated gold mine spoil.

Ecotoxicol Environ Saf

University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea. Electronic address:

Published: April 2022

Arsenic (As) contaminated mining spoils pose health threats to environmental resources and humans, and thus, mitigating this potential risk is worth investigating. Here, we studied the impacts of biochar, compost, iron oxide, manure, and inorganic fertilizer on the non-specifically (readily bioavailable)- and specifically- sorbed As and soil quality improvement of an abandoned mine spoil highly contaminated with As (total As = 1807 mg/kg). Compost, iron oxide, manure, and biochar were each applied at 0.5%, 2%, and 5% (w/w) to the contaminated soil; and NPK fertilizer at 0.1, 0.2, and 5.0 g/kg. The non-specifically (readily bioavailable)- and specifically- sorbed As were extracted sequentially and available P, total C and N, dissolved organic carbon, soil soluble anions, and exchangeable cations were extracted after 1- and 28-day incubation. Compost, manure, and biochar at 5% improved the total C and N and exchangeable K, Mg and Na. However, manure, compost, and iron oxide at 5% reduced available P from 118.5 to 60.3, 12.6, and 7.1 mg/kg, respectively. As compared to the untreated soil, the addition of iron oxide doses reduced the readily bioavailable As by 93%; while compost, manure, inorganic fertilizers, and biochar increased it by 106-332%, 24-315%, 19-398%, and 28-47%, respectively, with a significantly higher impact for the 5% doses. Furthermore, compost reduced specifically-sorbed As content (14-37%), but the other amendments did not significantly affect it. The impacts of the amendments on the readily bioavailable As was stronger than on specifically-sorbed As; but these were not affected by the incubation period. Arsenic bioavailability in our soil increased with increasing the soil pH and the contents of Cl, DOC, and exchangeable K and Na. We conclude that iron-rich materials can be used to reduce As bioavailability and to mitigate the associated environmental and human health risk in such mining spoils. However, the carbon-, and P-rich and alkaline materials increased the bioavailability of As, which indicates that these amendments may increase the risk of As, but can be used to enhance phytoextraction efficiency of As in the gold mining spoil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.113358DOI Listing

Publication Analysis

Top Keywords

iron oxide
20
compost iron
16
oxide manure
12
manure inorganic
12
biochar compost
8
inorganic fertilizer
8
soil quality
8
mine spoil
8
mining spoils
8
non-specifically bioavailable-
8

Similar Publications

Per- and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways.

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Nanoparticles have gained attention as drug delivery vehicles for cancer treatment, but often struggle with poor tumor accumulation and penetration. Single external magnets can enhance magnetic nanoparticle delivery but are limited to superficial tumors due to the rapid decline in the magnetic field strength with distance. We previously showed that a 2-magnet device could extend targeting to greater tissue depths.

View Article and Find Full Text PDF

Lactoperoxidase (LPO) is a heme-containing mammalian enzyme that is found in the extracellular fluids of animals including plasma, saliva, airway epithelial and nasal lining fluids, milk, tears, and gastric juices. LPO uses hydrogen peroxide (HO) to convert substrates into oxidized products. Previous structural studies have shown that HO, CO, and CN are bound to LPO at the distal heme cavity by coordinating with heme iron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!