Objective: Systemic sclerosis (SSc) is a debilitating autoimmune disease characterized by severe lung outcomes resulting in reduced life expectancy. Fra-2-transgenic mice offer the opportunity to decipher the relationships between the immune system and lung fibrosis. This study was undertaken to investigate whether the Fra-2-transgenic mouse lung phenotype may result from an imbalance between the effector and regulatory arms in the CD4+ T cell compartment.
Methods: We first used multicolor flow cytometry to extensively characterize homeostasis and the phenotype of peripheral CD4+ T cells from Fra-2-transgenic mice and control mice. We then tested different treatments for their effectiveness in restoring CD4+ Treg cell homeostasis, including adoptive transfer of Treg cells and treatment with low-dose interleukin-2 (IL-2).
Results: Fra-2-transgenic mice demonstrated a marked decrease in the proportion and absolute number of peripheral Treg cells that preceded accumulation of activated, T helper cell type 2-polarized, CD4+ T cells. This defect in Treg cell homeostasis was derived from a combination of mechanisms including impaired generation of these cells in both the thymus and the periphery. The impaired ability of peripheral conventional CD4+ T cells to produce IL-2 may greatly contribute to Treg cell deficiency in Fra-2-transgenic mice. Notably, adoptive transfer of Treg cells, low-dose IL-2 therapy, or combination therapy changed the phenotype of Fra-2-transgenic mice, resulting in a significant reduction in pulmonary parenchymal fibrosis and vascular remodeling in the lungs.
Conclusion: Immunotherapies for restoring Treg cell homeostasis could be relevant in SSc. An intervention based on low-dose IL-2 injections, as is already proposed in other autoimmune diseases, could be the most suitable treatment modality for restoring Treg cell homeostasis for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.42111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!