Inflammatory molecules facilitate the development of docetaxel-resistant prostate cancer cells in vitro and in vivo.

Fundam Clin Pharmacol

Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Published: October 2022

Numerous molecular mechanisms have been found to contribute to docetaxel-induced resistance in prostate cancer (PCa). In this study, the changes in gene expression profiles of multidrug resistant PCa cells that were established in response to docetaxel were determined using microarray analysis. In addition to alterations in the expression of multidrug resistance-associated genes, the expression levels of multiple inflammatory molecules, in particular IL-6, significantly increased in resistant cells in vitro and in vivo, which further increased with the development of drug resistance following microarray, qRT-PCR and ELISA analysis. Compared with parental cells, resistant cells also presented with stronger activation of multiple IL-6-associated signaling pathways STAT1/3, NF-κB, and PI3K/AKT. Inactivation of IL-6 using a neutralizing antibody resulted in a slight effect on the sensitivity of resistant cells to docetaxel, while blockade of of STAT1/3, NF-κB, or PI3K/AKT signaling significantly resensitized resistant cells to docetaxel. Of note, simultaneous inactivation of IL-6 and STAT1/3, PI3K/AKT or NF-κB further enhanced the sensitivity of the resistant cells to docetaxel. Thus, inflammatory molecules, in particular IL-6, and IL-6-associated signaling pathways NF-κB, STAT1/3, and PI3K/AKT, are crucial mediators of the development of docetaxel-resistance in PCa. Targeting inflammatory molecules and signaling pathways could be a potential therapeutic option for the intervention of drug resistance in PCa.

Download full-text PDF

Source
http://dx.doi.org/10.1111/fcp.12773DOI Listing

Publication Analysis

Top Keywords

resistant cells
20
inflammatory molecules
16
signaling pathways
12
cells docetaxel
12
prostate cancer
8
cells
8
cells vitro
8
vitro vivo
8
molecules il-6
8
drug resistance
8

Similar Publications

LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit.

Plant Physiol

January 2025

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R.  China.

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.

View Article and Find Full Text PDF

Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach.

View Article and Find Full Text PDF

Tumor Microenvironment-Responsive Lipid Nanoparticle for Blocking Mitosis and Reducing Drug Resistance in NSCLC.

J Med Chem

January 2025

State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Blocking mitosis is a promising strategy to induce tumor cell death. However, AMPK- and PFKFB3-mediated glycolysis can maintain ATP supply and help tumor cells overcome antimitotic drugs. Inhibiting glycolysis provides an opportunity to decrease the resistance of tumor cells to antimitotic drugs.

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!