Multimeric structure enables the acceleration of KaiB-KaiC complex formation induced by ADP/ATP exchange inhibition.

PLoS Comput Biol

Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi, Japan.

Published: March 2022

Circadian clocks tick a rhythm with a nearly 24-hour period in a variety of organisms. In the clock proteins of cyanobacteria, KaiA, KaiB, and KaiC, known as a minimum circadian clock, the slow KaiB-KaiC complex formation is essential in determining the clock period. This complex formation, occurring when the C1 domain of KaiC hexamer binds ADP molecules produced by the ATPase activity of C1, is considered to be promoted by accumulating ADP molecules in C1 through inhibiting the ADP/ATP exchange (ADP release) rather than activating the ATP hydrolysis (ADP production). Significantly, this ADP/ATP exchange inhibition accelerates the complex formation together with its promotion, implying a potential role in the period robustness under environmental perturbations. However, the molecular mechanism of this simultaneous promotion and acceleration remains elusive because inhibition of a backward process generally slows down the whole process. In this article, to investigate the mechanism, we build several reaction models of the complex formation with the pre-binding process concerning the ATPase activity. In these models, six KaiB monomers cooperatively and rapidly bind to C1 when C1 binds ADP molecules more than a given threshold while stabilizing the binding-competent conformation of C1. Through comparison among the models proposed here, we then extract three requirements for the simultaneous promotion and acceleration: the stabilization of the binding-competent C1 by KaiB binding, slow ADP/ATP exchange in the binding-competent C1, and relatively fast ADP/ATP exchange occurring in the binding-incompetent C1 in the presence of KaiB. The last two requirements oblige KaiC to form a multimer. Moreover, as a natural consequence, the present models can also explain why the binding of KaiB to C1 reduces the ATPase activity of C1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8929707PMC
http://dx.doi.org/10.1371/journal.pcbi.1009243DOI Listing

Publication Analysis

Top Keywords

complex formation
20
adp/atp exchange
20
adp molecules
12
atpase activity
12
kaib-kaic complex
8
exchange inhibition
8
binds adp
8
simultaneous promotion
8
promotion acceleration
8
complex
5

Similar Publications

Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.

View Article and Find Full Text PDF

Examples of long-range gene regulation in bacteria are rare and generally thought to involve DNA looping. Here, using a combination of biophysical approaches including X-ray crystallography and single-molecule analysis for the KorB-KorA system in Escherichia coli, we show that long-range gene silencing on the plasmid RK2, a source of multi-drug resistance across diverse Gram-negative bacteria, is achieved cooperatively by a DNA-sliding clamp, KorB, and a clamp-locking protein, KorA. We show that KorB is a CTPase clamp that can entrap and slide along DNA to reach distal target promoters up to 1.

View Article and Find Full Text PDF

Floricoccus penangensis ML061-4 was originally isolated from the leaf surface of an Assam tea plant (Camellia sinensis var. assamica) from Northern Thailand. To assess the functions encoded by the F.

View Article and Find Full Text PDF

Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder affecting women of childbearing age, and we aimed to reveal its underlying molecular mechanisms. Gene expression profiles from GSE138518 and GSE155489, and single-cell RNA sequencing (scRNA-seq) data from PRJNA600740 were collected and subjected to bioinformatics analysis to identify the complex molecular mechanisms of PCOS. The expression of genes was detected by RT-qPCR.

View Article and Find Full Text PDF

We present the case of a toddler displaying neuroregression post-acute gastroenteritis, initially suggesting neurodegenerative disorders. Further investigations showed atypical results-neuroimaging was inconsistent with suspected disorders, while fundus evaluation, evoked potentials and nerve conduction velocity were normal. Specialised tests using gas chromatography mass spectrometry and tandem mass spectrometry identified methylmalonic acidaemia (MMA), implicating abnormal neurometabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!