Multiview dictionary learning (DL) is attracting attention in multiview clustering due to the efficient feature learning ability. However, most existing multiview DL algorithms are facing problems in fully utilizing consistent and complementary information simultaneously in the multiview data and learning the most precise representation for multiview clustering because of gaps between views. This article proposes an efficient multiview DL algorithm for multiview clustering, which uses the partially shared DL model with a flexible ratio of shared sparse coefficients to excavate both consistency and complementarity in the multiview data. In particular, a differentiable scale-invariant function is used as the sparsity regularizer, which considers the absolute sparsity of coefficients as the l norm regularizer but is continuous and differentiable almost everywhere. The corresponding optimization problem is solved by the proximal splitting method with extrapolation technology; moreover, the proximal operator of the differentiable scale-invariant regularizer can be derived. The synthetic experiment results demonstrate that the proposed algorithm can recover the synthetic dictionary well with reasonable convergence time costs. Multiview clustering experiments include six real-world multiview datasets, and the performances show that the proposed algorithm is not sensitive to the regularizer parameter as the other algorithms. Furthermore, an appropriate coefficient sharing ratio can help to exploit consistent information while keeping complementary information from multiview data and thus enhance performances in multiview clustering. In addition, the convergence performances show that the proposed algorithm can obtain the best performances in multiview clustering among compared algorithms and can converge faster than compared multiview algorithms mostly.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3153310DOI Listing

Publication Analysis

Top Keywords

multiview clustering
24
multiview
14
differentiable scale-invariant
12
multiview data
12
proposed algorithm
12
partially shared
8
dictionary learning
8
multiview algorithms
8
performances proposed
8
performances multiview
8

Similar Publications

In credit risk assessment, unsupervised classification techniques can be introduced to reduce human resource expenses and expedite decision-making. Despite the efficacy of unsupervised learning methods in handling unlabeled datasets, their performance remains limited owing to challenges such as imbalanced data, local optima, and parameter adjustment complexities. Thus, this paper introduces a novel hybrid unsupervised classification method, named the two-stage hybrid system with spectral clustering and semi-supervised support vector machine (TSC-SVM), which effectively addresses the unsupervised imbalance problem in credit risk assessment by targeting global optimal solutions.

View Article and Find Full Text PDF

Background: Mining functional gene modules from genomic data is an important step to detect gene members of pathways or other relations such as protein-protein interactions. This work explores the plausibility of detecting functional gene modules by factorizing gene-phenotype association matrix from the phenotype ontology data rather than the conventionally used gene expression data. Recently, the hierarchical structure of phenotype ontologies has not been sufficiently utilized in gene clustering while functionally related genes are consistently associated with phenotypes on the same path in phenotype ontologies.

View Article and Find Full Text PDF

Multi-view clustering has garnered significant attention due to its capacity to utilize information from multiple perspectives. The concept of anchor graph-based techniques was introduced to manage large-scale data better. However, current methods rely on K-means or uniform sampling to select anchors in the original space.

View Article and Find Full Text PDF

MFC-ACL: Multi-view fusion clustering with attentive contrastive learning.

Neural Netw

December 2024

College of Automation, Chongqing University of Posts and Telecommunications, Nan'an District, 400065, Chongqing, China. Electronic address:

Multi-view clustering can better handle high-dimensional data by combining information from multiple views, which is important in big data mining. However, the existing models which simply perform feature fusion after feature extraction for individual views, mostly fails to capture the holistic attribute information of multi-view data due to ignoring the significant disparities among views, which seriously affects the performance of multi-view clustering. In this paper, inspired by the attention mechanism, an approach called Multi-View Fusion Clustering with Attentive Contrastive Learning (MFC-ACL) is proposed to tackle these issues.

View Article and Find Full Text PDF

The rapid development of spatial transcriptomics (ST) technology has provided unprecedented opportunities to understand tissue relationships and functions within specific spatial contexts. Accurate identification of spatial domains is crucial for downstream spatial transcriptomics analysis. However, effectively combining gene expression data, histological images and spatial coordinate data to identify spatial domains remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!