Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular photocatalysts designed with earth-abundant elements are rare and challenging in artificial photosynthesis study. Herein, we report a multimetallic FeNa purpurin () complex for the reduction of CO in DMF under visible-light irradiation. The photocatalytic system achieves 91% selectivity and 2625 ± 334 turnovers of CO in 120 h, which is among the highest reported for a noble-metal-free catalyst without an additional photosensitizer. UV-vis and electrochemical studies suggest that the mechanism involves subsequent reductions and protonations of to generate [FeNa(PP)] and [FeNa(PP)] as the active photocatalysts in CO reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c13081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!