Cells coordinate intracellular activities in response to changes in the extracellular environment to maximize their probability of survival and proliferation. Eukaryotic cells need to adapt to constant changes in the osmolarity of their environment. In yeast, the high-osmolarity glycerol (HOG) pathway is responsible for the response to high osmolarity. Activation of the Hog1 stress-activated protein kinase (SAPK) induces a complex program required for cellular adaptation that includes temporary arrest of cell cycle progression, adjustment of transcription and translation patterns, and the regulation of metabolism, including the synthesis and retention of the compatible osmolyte glycerol. Hog1 is a member of the family of p38 SAPKs, which are present across eukaryotes. Many of the properties of the HOG pathway and downstream-regulated proteins are conserved from yeast to mammals. This review addresses the global view of this signaling pathway in yeast, as well as the contribution of Dr Hohmann's group to its understanding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953452 | PMC |
http://dx.doi.org/10.1093/femsyr/foac013 | DOI Listing |
Yeast
January 2025
Department of Genetics, Stanford University, Stanford, California, USA.
Killer yeasts, such as the K1 killer strain of S. Cerevisiae, express a secreted anti-competitive toxin whose production and propagation require the presence of two vertically-transmitted dsRNA viruses. In sensitive cells lacking killer virus infection, toxin binding to the cell wall results in ion pore formation, disruption of osmotic homeostasis, and cell death.
View Article and Find Full Text PDFJ Mycol Med
December 2024
Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
Fungi can remarkably sense and adapt to various extracellular stimuli and stress conditions. Oxidative stress, which results from an imbalance between reactive oxygen species production and antioxidant defenses, leads to cellular damage and death. In , oxidative stress is managed by a complex antioxidant system, including thioredoxins, glutathione, catalases, peroxidases, and superoxide dismutase, with glutathione playing a crucial role.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico.
Efficient transcriptional regulation of the stress response is critical for microorganism survival. In yeast, stress-related gene expression, particularly for antioxidant enzymes like catalases, mitigates reactive oxygen species such as hydrogen peroxide (HO), preventing cell damage. The halotolerant yeast shows oxidative stress tolerance, largely due to high catalase activity from and genes.
View Article and Find Full Text PDFPLoS One
November 2024
Food Microbiology Unit, Miyagi University School of Food Industrial Sciences, Sendai, Japan.
Hansenula mrakii killer toxin resistant gene 1 (HKR1) is an intronless, single-exon gene that encodes Hkr1, the signaling mucin of the budding yeast Saccharomyces cerevisiae. HKR1 overexpression confers S. cerevisiae cells with resistance to the HM-1 killer toxin produced by the killer yeast Hansenula mrakii (currently known as Cyberlindnera mrakii).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!