i-Motif formation and spontaneous deletions in human cells.

Nucleic Acids Res

Department of Hematologic Malignancies Translational Science, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.

Published: April 2022

Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989526PMC
http://dx.doi.org/10.1093/nar/gkac158DOI Listing

Publication Analysis

Top Keywords

i-motif structure
12
i-motif
8
unresolved i-motif
8
structure neutral
8
susceptible bisulfite
8
native dna
8
i-motif formation
4
formation spontaneous
4
deletions
4
spontaneous deletions
4

Similar Publications

Advancing DNA Structural Analysis: A SERS Approach Free from Citrate Interference Combined with Machine Learning.

J Phys Chem Lett

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.

Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA).

View Article and Find Full Text PDF

Since the building blocks of DNA are nonfluorescent, various external fluorescence reporters have been employed to investigate the structure, dynamics, and function of DNA G-quadruplexes (GQs) and i-motifs (iMs), which play an important role in gene regulation and expression. However, most of those fluorescence reporters lack the ability to provide site-specific structural information of interest. Therefore, it is necessary to develop fluorescent nucleoside analogues that can be covalently inserted into oligonucleotides, which not only serve this purpose, but minimize any potential perturbation towards the native structure of the DNA systems in question.

View Article and Find Full Text PDF

Flipons and the origin of the genetic code.

Biol Lett

January 2025

Discovery, InsideOutBio , Charlestown, MA, USA.

This paper is focused on the origins of the contemporary genetic code. A novel explanation is proposed for how the mapping of nucleotides in DNA to amino acids in proteins arose that derives from repeat nucleotide sequences able to form alternative nucleic acid structures (ANS), such as the unusual left-handed Z-DNA, triplex, G-quadruplex and I-motif conformations. The scheme identifies sequence-specific contacts that map ANS repeats to dipeptide polymers (DPS).

View Article and Find Full Text PDF

i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence.

View Article and Find Full Text PDF

I-motif formation in the promoter region of the B-MYB proto-oncogene.

Int J Biol Macromol

January 2025

CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal. Electronic address:

Understanding the mechanisms of carcinogenesis is essential to combat cancer. The search for alternative targets for anticancer therapy has gained interest, particularly when focused on upstream pathways. This strategy is particularly relevant when the encoded target proteins are known - or believed - to be "undruggable", as has been reported for the B-MYB oncogene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!