Microtubules are polymers of αβ-tubulin heterodimers that organize into distinct structures in cells. Microtubule-based architectures and networks often contain subsets of microtubule arrays that differ in their dynamic properties. For example, in dividing cells, stable bundles of crosslinked microtubules coexist in close proximity to dynamic non-crosslinked microtubules. TIRF-microscopy-based in vitro reconstitution studies enable the simultaneous visualization of the dynamics of these different microtubule arrays. In this assay, an imaging chamber is assembled with surface-immobilized microtubules, which are either present as single filaments or organized into crosslinked bundles. Introduction of tubulin, nucleotides, and protein regulators allows direct visualization of associated proteins and of dynamic properties of single and crosslinked microtubules. Furthermore, changes that occur as dynamic single microtubules organize into bundles can be monitored in real-time. The method described here allows for a systematic evaluation of the activity and localization of individual proteins, as well as synergistic effects of protein regulators on two different microtubule subsets under identical experimental conditions, thereby providing mechanistic insights that are inaccessible by other methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914519PMC
http://dx.doi.org/10.3791/63377DOI Listing

Publication Analysis

Top Keywords

simultaneous visualization
8
visualization dynamics
8
single microtubules
8
microtubule arrays
8
dynamic properties
8
crosslinked microtubules
8
protein regulators
8
microtubules
7
dynamics crosslinked
4
single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!