A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany. | LitMetric

Background The treatment of stroke has been undergoing rapid changes. As treatment options progress, prediction of those under risk for complications becomes more important. Available models have, however, frequently been built based on data no longer representative of today's care, in particular with respect to acute stroke management. Our aim was to build and validate prediction models for 4 clinically important, severe outcomes after stroke. Methods and Results We used German registry data from 152 710 patients with acute ischemic stroke obtained in 2016 (development) and 2017 (validation). We took into account potential predictors that were available at admission and focused on in-hospital mortality, intracranial mass effect, secondary intracerebral hemorrhage, and deep vein thrombosis as outcomes. Validation cohort prediction and calibration performances were assessed using the following 4 statistical approaches: logistic regression with backward selection, 1-regularized logistic regression, k-nearest neighbor, and gradient boosting classifier. In-hospital mortality and intracranial mass effects could be predicted with high accuracy (both areas under the curve, 0.90 [95% CI, 0.90-0.90]), whereas the areas under the curve for intracerebral hemorrhage (0.80 [95% CI, 0.80-0.80]) and deep vein thrombosis (0.73 [95% CI, 0.73-0.73]) were considerably lower. Stroke severity was the overall most important predictor. Models based on gradient boosting achieved better performances than those based on logistic regression for all outcomes. However, area under the curve estimates differed by a maximum of 0.02. Conclusions We validated prediction models for 4 severe outcomes after acute ischemic stroke based on routinely collected, recent clinical data. Model performance was superior to previously proposed approaches. These predictions may help to identify patients at risk early after stroke and thus facilitate an individualized level of care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075320PMC
http://dx.doi.org/10.1161/JAHA.121.023175DOI Listing

Publication Analysis

Top Keywords

prediction models
12
acute ischemic
12
ischemic stroke
12
logistic regression
12
stroke
9
models severe
8
severe outcomes
8
in-hospital mortality
8
mortality intracranial
8
intracranial mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!