Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Design and development of an efficient, nonprecious catalyst with structural features and functionality necessary for driving the hydrogen evolution reaction (HER) in an alkaline medium remain a formidable challenge. At the root of the functional limitation is the inability to tune the active catalytic sites while overcoming the poor reaction kinetics observed under basic conditions. Herein, we report a facile approach to enable the selective design of an electrochemically efficient cobalt phosphide oxide composite catalyst on carbon cloth (CoP-CoO/CC), with good activity and durability toward HER in alkaline medium (η = -43 mV). Theoretical studies revealed that the redistribution of electrons at laterally dispersed Co phosphide/oxide interfaces gives rise to a synergistic effect in the heterostructured composite, by which various Co oxide phases initiate the dissociation of the alkaline water molecule. Meanwhile, the highly active CoP further facilitates the adsorption-desorption process of water electrolysis, leading to extremely high HER activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945697 | PMC |
http://dx.doi.org/10.1021/acsnano.1c09254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!