Complexities of Regioselective Ring-Opening vs Transcarbonylation-Driven Structural Metamorphosis during Organocatalytic Polymerizations of Five-Membered Cyclic Carbonate Glucose Monomers.

JACS Au

Department of Materials Science & Engineering, Department of Chemistry, and Department of Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States.

Published: February 2022

Rigorous investigations of the organobase-catalyzed ring-opening polymerizations (ROPs) of a series of five-membered cyclic carbonate monomers derived from glucose revealed that competing transcarbonylation reactions scrambled the regiochemistries of the polycarbonate backbones. Regioirregular poly(2,3-α-d-glucose carbonate) backbone connectivities were afforded by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed ROPs of three monomers having different cyclic acetal protecting groups through the 4- and 6-positions. Small molecule studies conducted upon isolated unimers and dimers indicated a preference for Cx-O2 vs Cx-O3 bond cleavage from tetrahedral intermediates along the pathways of addition-elimination mechanisms when the reactions were performed at room temperature. Furthermore, treatment of isolated 3-unimer or 2-unimer, having the carbonate linkage in the 3- or 2-position as obtained from either Cx-O2 or Cx-O3 bond cleavage, respectively, gave the same 74:26 (3-unimer:2-unimer) ratio, confirming the occurrence of transcarbonylation reactions with a preference for 3-unimer vs. 2-unimer formation in the presence of organobase catalyst at room temperature. In contrast, unimer preparation at -78 °C favored Cx-O3 bond cleavage to afford a majority of 2-unimer, presumably due to a lack of transcarbonylation side reactions. Computational studies supported the experimental findings, enhancing fundamental understanding of the regiochemistry resulting from the ring-opening and subsequent transcarbonylation reactions during ROP of glucose carbonates. These findings are expected to guide the development of advanced carbohydrate-derived polymer materials by an initial monomer design via side chain acetal protecting groups, with the ability to evolve the properties further through later-stage structural metamorphosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889557PMC
http://dx.doi.org/10.1021/jacsau.1c00545DOI Listing

Publication Analysis

Top Keywords

transcarbonylation reactions
12
cx-o3 bond
12
bond cleavage
12
structural metamorphosis
8
five-membered cyclic
8
cyclic carbonate
8
acetal protecting
8
protecting groups
8
cx-o2 cx-o3
8
room temperature
8

Similar Publications

The substituents present upon five-membered bicyclic glucose carbonate monomers were found to greatly affect the reactivities and regioselectivities during ring-opening polymerization (ROP), which contrast in significant and interesting ways from previous studies on similar systems, while also leading to predictable effects on the thermal properties of the resulting polycarbonates. Polymerization behaviors were probed for a series of five five-membered bicyclic 2,3-glucose-carbonate monomers having 4,6-ether, -carbonate, or -sulfonyl urethane protecting groups, under catalysis with three different organobase catalysts. Irrespective of the organobase catalyst employed, regioregular polycarbonates were obtained via ROP of monomers with ether substituents, while the backbone connectivities of polymers derived from monomers with carbonate protecting groups suffered transcarbonylation reactions, resulting in irregular backbone connectivities and broad molar mass distributions.

View Article and Find Full Text PDF

Complexities of Regioselective Ring-Opening vs Transcarbonylation-Driven Structural Metamorphosis during Organocatalytic Polymerizations of Five-Membered Cyclic Carbonate Glucose Monomers.

JACS Au

February 2022

Department of Materials Science & Engineering, Department of Chemistry, and Department of Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States.

Rigorous investigations of the organobase-catalyzed ring-opening polymerizations (ROPs) of a series of five-membered cyclic carbonate monomers derived from glucose revealed that competing transcarbonylation reactions scrambled the regiochemistries of the polycarbonate backbones. Regioirregular poly(2,3-α-d-glucose carbonate) backbone connectivities were afforded by 1,5,7-triazabicyclo[4.4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!