Today, a growing number of computational aids and simulations are shaping model-informed drug development. Artificial intelligence, a family of self-learning algorithms, is only the latest emerging trend applied by academic researchers and the pharmaceutical industry. Nanomedicine successfully conquered several niche markets and offers a wide variety of innovative drug delivery strategies. Still, only a small number of patients benefit from these advanced treatments, and the number of data sources is very limited. As a consequence, "big data" approaches are not always feasible and smart combinations of human and artificial intelligence define the research landscape. These methodologies will potentially transform the future of nanomedicine and define new challenges and limitations of machine learning in their development. In our review, we present an overview of modeling and artificial intelligence applications in the development and manufacture of nanomedicines. Also, we elucidate the role of each method as a facilitator of breakthroughs and highlight important limitations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894322 | PMC |
http://dx.doi.org/10.3389/fdgth.2022.799341 | DOI Listing |
Sci Data
December 2024
Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.
In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
Chair of Autonomous Systems and Mechatronics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.
View Article and Find Full Text PDFBMC Med Educ
December 2024
Department of Orthopedics, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, 151203, India.
Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
This dataset contains demographic, morphological and pathological data, endoscopic images and videos of 191 patients with colorectal polyps. Morphological data is included based on the latest international gastroenterology classification references such as Paris, Pit and JNET classification. Pathological data includes the diagnosis of the polyps including Tubular, Villous, Tubulovillous, Hyperplastic, Serrated, Inflammatory and Adenocarcinoma with Dysplasia Grade & Differentiation.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2024
Klinikum Stuttgart, Stuttgart Cancer Center - Tumorzentrum Eva Mayr-Stihl DE, Kriegsbergstraße 60, Stuttgart, D-70174, Germany.
Background: Medical narratives are fundamental to the correct identification of a patient's health condition. This is not only because it describes the patient's situation. It also contains relevant information about the patient's context and health state evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!