Matrin-3 (MATR3) is a DNA- and RNA-binding protein implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and distal myopathy. Here, we report the development of a yeast model of MATR3 proteotoxicity and aggregation. MATR3 is toxic and forms dynamic shell-like nuclear condensates in yeast. Disease-associated mutations in MATR3 impair condensate dynamics and disrupt condensate morphology. MATR3 toxicity is largely driven by its RNA-recognitions motifs (RRMs). Further, deletion of one or both RRMs drives coalescence of these condensates. Aberrant phase separation of several different RBPs underpins ALS/FTD, and we have engineered Hsp104 variants to reverse this misfolding. Here, we demonstrate that these same variants also counter MATR3 toxicity. We suggest that these Hsp104 variants which rescue MATR3, TDP-43, and FUS toxicity might be employed against a range of ALS/FTD-associated proteins. We anticipate that our yeast model could be a useful platform to screen for modulators of MATR3 misfolding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889142PMC
http://dx.doi.org/10.1016/j.isci.2022.103900DOI Listing

Publication Analysis

Top Keywords

condensate dynamics
8
matr3
8
yeast model
8
matr3 toxicity
8
hsp104 variants
8
molecular determinants
4
determinants modifiers
4
modifiers matrin-3
4
toxicity
4
matrin-3 toxicity
4

Similar Publications

Variational Quantum Algorithm for Non-Markovian Quantum Dynamics Using an Ensemble of Ehrenfest Trajectories.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States.

The simulation of non-Markovian quantum dynamics plays an important role in the understanding of charge and exciton dynamics in the condensed phase environment, yet such a simulation remains computationally expensive on classical computers. In this work, we develop a variational quantum algorithm that is capable of simulating non-Markovian quantum dynamics on quantum computers. The algorithm captures the non-Markovian effect by employing the Ehrenfest trajectories and Monte Carlo sampling of their thermal distribution.

View Article and Find Full Text PDF

Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.

View Article and Find Full Text PDF

Fine-tuned calcium homeostasis is crucial for murine erythropoiesis.

FEBS J

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.

Intracellular calcium (Ca) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca levels during mouse erythroid development.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.

View Article and Find Full Text PDF

Solution NMR goes big: Atomic resolution studies of protein components of molecular machines and phase-separated condensates.

Curr Opin Struct Biol

January 2025

Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada. Electronic address:

The tools of structural biology have undergone remarkable advances in the past decade. These include new computational and experimental approaches that have enabled studies at a level of detail - and ease - that were not previously possible. Yet, significant deficiencies in our understanding of biomolecular function remain and new challenges must be overcome to go beyond static pictures towards a description of function in terms of structural dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!