A series of heteroleptic Cu(I) diimine complexes with different ancillary ligands and 6,6'-dimethyl-2,2'-bipyridine-4,4'-dibenzoic acid (dbda) as the anchoring ligand were self-assembled on TiO surfaces and used as dyes for dye-sensitized solar cells (DSSCs). The binding to the TiO surface was studied by hard X-ray photoelectron spectroscopy for a bromine-containing complex, confirming the complex formation. The performance of all complexes was assessed and rationalized on the basis of their respective ancillary ligand. The DSSC photocurrent-voltage characteristics, incident photon-to-current conversion efficiency (IPCE) spectra, and calculated lowest unoccupied molecular orbital (LUMO) distributions collectively show a push-pull structural dye design, in which the ancillary ligand exhibits an electron-donating effect that can lead to improved solar cell performance. By analyzing the optical properties of the dyes and their solar cell performance, we can conclude that the presence of ancillary ligands with bulky substituents protects the Cu(I) metal center from solvent coordination constituting a critical factor in the design of efficient Cu(I)-based dyes. Moreover, we have identified some components in the I/I -based electrolyte that causes dissociation of the ancillary ligand, i.e., TiO photoelectrode bleaching. Finally, the detailed studies on one of the dyes revealed an electrolyte-dye interaction, leading to a dramatic change of the dye properties when adsorbed on the TiO surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889538 | PMC |
http://dx.doi.org/10.1021/acsaem.1c02778 | DOI Listing |
Front Antibiot
May 2024
Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
Recent reports from the Centers for Disease Control and Prevention approximate 500,000 cases of Lyme disease in the United States yearly, a significant economic burden on the healthcare system. The standard treatment for Lyme disease includes broad-spectrum antibiotics, which may be administered for extensive periods of time and result in significant impacts to the patient. Recently, we demonstrated that , the causative agent of Lyme disease, is uniquely dependent upon peptide acquisition via an oligopeptide transport (Opp) system.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.
View Article and Find Full Text PDFACS Omega
December 2024
BeDimensional S.p.A., Via Lungotorrente Secca 3D, 16163 Genova, Italy.
The engineering of charge transport materials, with electronic characteristics that result in effective charge extraction and transport dynamics, is pivotal for the realization of efficient perovskite solar cells (PSCs). Herein, we elucidate the critical role of terminal substituent methoxy groups (-OCH) on the bandgap tuning of the spiro-like hole transport materials (HTMs) to realize performant and cost-effective PSCs. By considering spiro-OMeTAD as the benchmark HTM, we kept the backbone of spiro while replacing diphenylamine with phenanthrenimidazole.
View Article and Find Full Text PDFInorg Chem
December 2024
Univ. Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
We report the synthesis and characterization of two chiral binuclear iridium(III) complexes ( and ) prepared from enantiopure building blocks [μ-Cl(Δ-Ir(C^N))] and [μ-Cl(Λ-Ir(C^N))]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer () and a dimer (, mixture).
View Article and Find Full Text PDFACS Org Inorg Au
December 2024
Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada.
The integration of fluorine into medicinal compounds has become a widely used strategy to improve the biochemical and therapeutic properties of drugs. Inclusion of -CFH and -OCF fluoroalkyl groups has garnered attention due to their bioisosteric properties, enhanced lipophilicity, and potential hydrogen-bonding capability in bioactive substances. In this study, we prepared a series of stable Cu[CF(OCF)(CFH)]L complexes by insertion of commercially available perfluoro(methyl vinyl ether), CF=CF(OCF), into Cu-H bonds derived from Stryker's reagent, [CuH(PPh)], using ancillary ligands L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!