A mesoscopic theory for water-in-salt electrolytes combining density functional and field-theoretic methods is developed in order to explain the unexpectedly large period of the oscillatory decay of the disjoining pressure observed in recent experiments for the lithium bis(trifluoromethylsulfonyl)-imide (LiTFSI) salt [T. S. Groves et al., , , 1702]. We assumed spherical ions with different diameters and implicit solvent, inducing strong, short-range attraction between ions of the same sign. For this highly simplified model, we calculated correlation functions. Our results indicate that mesoscopic inhomogeneities can occur when the sum of the Coulomb and the water-mediated interactions between like ions is attractive at short and repulsive at large distances. We adjusted the attractive part of the potential to the water-in-LiTFSI electrolyte and obtained both the period and the decay rate of the correlations, in semiquantitative agreement with the experiment. In particular, the decay length of the correlations increases nearly linearly with the volume fraction of ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892908 | PMC |
http://dx.doi.org/10.1021/acsomega.1c06013 | DOI Listing |
Nano Lett
December 2024
Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.
Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.
View Article and Find Full Text PDFPhys Rev E
June 2024
School of Fundamental Science and Technology, Keio University, Yokohama 223-8522, Japan.
We consider a binary fluid mixture, which lies in the one-phase region near the demixing critical point, and study its transport through a capillary tube linking two large reservoirs. We assume that short-range interactions cause preferential adsorption of one component onto the tube's wall. The adsorption layer can become much thicker than the molecular size, which enables us to apply hydrodynamics based on a coarse-grained free-energy functional.
View Article and Find Full Text PDFSoft Matter
June 2024
Department of Aerospace Engineering, Graduate School of Engineering, Tohoku University, 6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8597, Japan.
The limitations in previous dissipative particle dynamics (DPD) studies confined simulations to a narrow resin range. This study refines DPD parameter calculation methodology, extending its application to diverse polymer materials. Using a bottom-up approach with molecular dynamics (MD) simulations, we evaluated solubility parameters and bead number density governing nonbonded interactions the Flory-Huggins parameter and covalent-bonded interactions.
View Article and Find Full Text PDFNat Phys
February 2024
IQMT, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
Molecules
March 2024
Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
A monolayer consisting of two types of particles, with energetically favored alternating stripes of the two components, is studied by Monte Carlo simulations and within a mesoscopic theory. We consider a triangular lattice model and assume short-range attraction and long-range repulsion between particles of the same kind, as well as short-range repulsion and long-range attraction for the cross-interaction. The structural evolution of the model upon increasing temperature is studied for equal chemical potentials of the two species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!