5-Fluorouracil (5-FU) is one of the most effective and widely used chemotherapeutic drugs in the treatment of colon cancer, yet chemoresistance is a common feature of colon cancer treatment, resulting in poor prognosis and short survival. Dynamic reprogramming of chromatin accessibility is crucial for proper regulation of gene transcription associated with cancer drug resistance by providing the gene regulatory machinery with rapid access to the open genomic DNA. Here, we explored the global chromatin accessibility and transcription changes by the assay for transposase-accessible chromatin using sequencing (ATAC-seq) in combination with transcriptome sequencing of both parental and 5-FU-resistant HCT15 cells, followed by integrative analysis to better understand the regulatory network underlying 5-FU resistance in colon cancer cells. A total of 3,175 differentially expressed mRNAs (DEGs), lncRNAs (DELs), and miRNAs (DEMs) related to 5-FU resistance were identified, including significantly upregulated , H19, and miR-17-5p; the downregulated , LINC01012, and miR-125b-5p; and chromatin modifiers such as INO80C, HDAC6, and KDM5A. The construction of the ceRNA regulatory network revealed that H19, HOXA11-AS, and NEAT1 might function as ceRNAs associated with 5-FU resistance in HCT15 cells. Moreover, 9,868 differentially accessible regions (DARs) were obtained, which were positively (r = 0.58) correlated with their nearest DEGs and DELs. The upregulated genes related to 4,937 hyper-accessible regions were significantly enriched in signaling pathways of MAPK, FOX, and WNT, while the 4,931 hypo-accessible regions were considered to be involved in declined biosynthesis of amino acids and nucleotide sugars, signaling pathways of Notch, and HIF-1. Analyses of the DAR sequences revealed that besides the AP-1 family, the TF motifs of FOX and KLF family members were highly enriched in hyper- and hypo-accessible regions, respectively. Finally, we obtained several critical TFs and their potential targets associated with DARs and 5-FU resistance, including FOXA1 and KLF3. These data provided clear insights and valuable resources for an improved understanding of the non-genetic landscape of 5-FU-resistant colon cancer cells based on chromatin accessibility and transcript levels, which allowed for genome-wide detection of TF binding sites, potential -regulatory elements and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891516 | PMC |
http://dx.doi.org/10.3389/fcell.2022.838332 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510280, China. Electronic address:
Background: Oxaliplatin is the first-line chemotherapy for patients with colon cancer (CC). However, its resistance limits its therapeutic efficacy.
Methods: Oxaliplatin resistance-associated differentially expressed genes (DEGs) in the GSE42387 and GSE227315 datasets were identified through bioinformatics methods.
Int J Biol Macromol
January 2025
the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China. Electronic address:
Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China. Electronic address:
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.
View Article and Find Full Text PDFPhysiother Res Int
January 2025
Universidade do Oeste de Santa Catarina, Joaçaba, Brasil.
Background And Purpose: Cancer is one of the most prevalent diseases in the general population, and is one of the main causes of changes in the population's illness profile. In this study, we assessed changes in the functional status and quality of life of patients in the first months of chemotherapy treatment.
Method: A prospective cohort study was carried out, collecting data from cancer patients seen at an outpatient clinic in the Midwest of Santa Catarina who had breast, lung, colon and rectum, prostate and head and neck cancer.
QJM
January 2025
Gastroenterology Unit, Department of Medicine, RIPAS Hospital, Jalan Putera Al-Muhtadee Billah, Bandar Seri Begawan, BA1712, Brunei Darussalam.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!