Background: Children who experience a mild Traumatic Brain Injury (mTBI) may encounter cognitive and behavioral changes that often negatively impact school performance. Communication linkages between the various healthcare systems and school systems are rarely well-coordinated, placing children with an mTBI at risk for prolonged recovery, adverse impact on learning, and mTBI re-exposure. The objective of this study is to rigorously appraise the pediatric Mild Traumatic Brain Injury Evaluation and Management Intervention that was designed to enhance diagnosis and management of pediatric mTBI through enhanced patient discharge instructions and communication linkages between school and primary care providers.
Methods: This is a combined randomized and 2 × 2 quasi-experimental study design with educational and technology interventions occurring at the clinician level with patient and school outcomes as key endpoints. The RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) framework will be utilized as a mix methods approach to appraise a multi-disciplinary, multi-setting intervention with the intent of improving outcomes for children who have experienced mTBI.
Discussion: Utilization of the RE-AIM framework complemented with qualitative inquiry is suitable for evaluating effectiveness of the Intervention with the aim of emphasizing priorities regarding pediatric mTBI. This program evaluation has the potential to support the knowledge needed to critically appraise the impact of mTBI recovery interventions across multiple settings, enabling uptake of the best-available evidence within clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891162 | PMC |
http://dx.doi.org/10.3389/fpubh.2021.740238 | DOI Listing |
Exp Neurol
December 2024
Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye. Electronic address:
Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (HR) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma.
View Article and Find Full Text PDFJ Pain
December 2024
Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia. Electronic address:
The perinatal period encompasses a critical window for neurodevelopment that renders the brain highly responsive to experience. Trauma, such as intimate partner violence (IPV) and early life stress/neglect, during this period negatively affects physical and mental health outcomes, including increasing ones risk for chronic pain. Although epigenetic programming likely contributes, the mechanisms that drive the relationship between perinatal trauma and adverse health outcomes, are not fully understood.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Department of Exercise Science, Thomas Jefferson University, Philadelphia, PA 19144, USA.
Collision-sport athletes, such as rugby players, are at risk of sport-related concussion (SRC). Women are known to be at higher risk of SRC and may experience more severe and chronic symptomology than men. Knowledge of the factors that affect a player's disclosure of their concussive symptoms could help to inform strategies to improve compliance with reporting and management of head injuries.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Background: Mild traumatic brain injury (mTBI) frequently results in persistent cognitive, emotional, and functional impairments, closely linked to disruptions in the default mode network (DMN). Understanding the mechanisms driving these network abnormalities is critical for advancing diagnostic and therapeutic strategies.
Methods: This study adopted a multimodal approach, combining functional connectivity (FC) analysis, diffusion tensor imaging (DTI), and gene expression profiling to investigate DMN disruptions in mTBI.
EClinicalMedicine
September 2024
Department of Medicine, University of Cambridge, Cambridge, UK.
Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!