Viral infections are a significant public health problem, primarily due to their high transmission rate, various pathological manifestations, ranging from mild to severe symptoms and subclinical onset. Laboratory diagnostic tests for infectious diseases, with a short enough turnaround time, are promising tools to improve patient care, antiviral therapeutic decisions, and infection prevention. Numerous microbiological molecular and serological diagnostic testing devices have been developed and authorised as benchtop systems, and only a few as rapid miniaturised, fully automated, portable digital platforms. Their successful implementation in virology relies on their performance and impact on patient management. This review describes the current progress and perspectives in developing micro- and nanotechnology-based solutions for rapidly detecting human viral respiratory infectious diseases. It provides a nonexhaustive overview of currently commercially available and under-study diagnostic testing methods and discusses the sampling and viral genetic trends as preanalytical components influencing the results. We describe the clinical performance of tests, focusing on alternatives such as microfluidics-, biosensors-, Internet-of-Things (IoT)-based devices for rapid and accurate viral loads and immunological responses detection. The conclusions highlight the potential impact of the newly developed devices on laboratory diagnostic and clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895598 | PMC |
http://dx.doi.org/10.3389/fcimb.2022.807253 | DOI Listing |
Commun Biol
January 2025
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, E-28029, Spain.
The frequency of mitochondrial DNA haplogroups (mtDNA-HG) in humans is known to be shaped by migration and repopulation. Mounting evidence indicates that mtDNA-HG are not phenotypically neutral, and selection may contribute to its distribution. Haplogroup H, the most abundant in Europe, improved survival in sepsis.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China. Electronic address:
Background: The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs).
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI.
Background: Determining why some upper respiratory illnesses provoke asthma exacerbations remains an unmet need.
Objective: To identify transcriptome-wide gene expression changes associated with colds that progress to exacerbation.
Methods: 208 urban children (6-17 years) with exacerbation-prone asthma were prospectively monitored for up to two cold illnesses.
Nitric Oxide
January 2025
Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, the Netherlands.
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as a flu-like illness with lung injury, often necessitating supplemental oxygen. Elderly individuals and those with pre-existing cardiovascular diseases are at increased risk of mortality. The endothelial barrier disruption observed in patients indicates systemic viral invasion and widespread endotheliitis.
View Article and Find Full Text PDFTissue Cell
December 2024
Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil. Electronic address:
SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!