Molten salts such as 2LiF-BeF (FLiBe) have been proposed as coolants for advanced nuclear fission and fusion reactors. Critical to the design, licensing and operation of these reactors is characterization and understanding of the chemical behavior and mass transport of activation and fission products, corrosion products, and other solutes in the coolant. Electrochemical techniques are a powerful suite of tools for probing these phenomena. The design of an experimental cell for molten salt electrochemistry is described herein. As a demonstration of this design, details of the experimental methods used to conduct electrochemical experiments with molten FLiBe with addition of LiH are provided. Decommissioning of the cell is considered from the point of view of decontamination and waste generated. Main features of the cell include:•Suitable for operation up to 800 °C; suitable for operation inside and outside of a glovebox.•Enables sweep gas, gas sampling and analysis; enables addition of solid and liquid materials during operation.•Supports a variety of electrode materials and arrangements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892162 | PMC |
http://dx.doi.org/10.1016/j.mex.2022.101626 | DOI Listing |
Sci Rep
January 2025
Research Institute of Energy and Resources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
To develop a direct production process for TiH powder from TiO, the reduction of TiO using Mg in molten MgCl - KCl salt under a high hydrogen chemical potential was investigated. The reduction of nano-sized TiO powder was conducted at 973 - 1073 K under an Ar or Ar and 10% H mixed gas atmosphere when the mass ratios of Mg to feed and salt to feed were 1.14 - 2.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
A two-dimensional (2D) amorphous iridium cobalt oxide (Am-IrCoO) was prepared using the molten salt method. The optimal catalyst shows a low overpotential of 230 mV at 10 mA cm in 0.5 M HSO.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Molten salts are promising candidates in numerous clean energy applications, where knowledge of thermophysical properties and vapor pressure across their operating temperature ranges is critical for safe operations. Due to challenges in evaluating these properties using experimental methods, fast and scalable molecular simulations are essential to complement the experimental data. In this study, we developed machine learning interatomic potentials (MLIP) to study the AlCl molten salt across varied thermodynamic conditions ( = 473-613 K and = 2.
View Article and Find Full Text PDFEnviron Res
January 2025
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
In recent years, the accumulation of waste plastics and emergence plastic-derived pollutants such as microplastics have driven significantly the development and updating of waste plastic utilization technology. This study prepared the porous carbon (PC-1-KOH) material directly from polyethylene terephthalate (PET) in waste plastic bottles using KOH activation and molten salt strategy for efficient removal of antibiotic tetracycline (TC). The maximum removal efficiency of TC was 100.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
COMTES FHT a.s., Prumyslova 995, 334 41 Dobrany, Czech Republic.
One of the concepts behind Generation IV reactors is a molten salt coolant system, where the materials for the reactor itself and for the primary and secondary circuit components are subjected to extreme chemical and thermal stresses. Due to the unavailability of these materials, a nickel-molybdenum alloy known as MoNiCr has been developed in the Czech Republic. This paper discusses the manufacturing process for the MoNiCr alloy, covering conventional casting technology, forming, powder atomization, additive manufacturing (AM) using the directed energy deposition (DED-LB) process, and final heat treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!