The giant panda () is an iconic bear native to China, famous for eating almost exclusively bamboo. This unusual dietary behavior for a carnivore is enabled by several key adaptations including low physical activity, reduced organ sizes and hypothyroidism leading to lowered energy expenditure. These adaptive phenotypes have been hypothesized to arise from a panda-unique single-nucleotide mutation in the dual-oxidase 2 () gene, involved in thyroid hormone synthesis. To test this hypothesis, we created genome-edited mice carrying the same point mutation as the panda and investigated its effect on metabolic phenotype. Homozygous mice were 27% smaller than heterozygous and wild-type ones, had 13% lower body mass-adjusted food intake, 55% decreased physical activity, lower mass of kidneys (11%) and brain (5%), lower serum thyroxine (T4: 36%), decreased absolute (12%) and mass-adjusted (5%) daily energy expenditure, and altered gut microbiota. Supplementation with T4 reversed the effects of the mutation. This work uses a state-of-the-art genome editing approach to demonstrate the link between a single-nucleotide mutation in a key endocrine-related gene and profound adaptive changes in the metabolic phenotype, with great importance in ecology and evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890364PMC
http://dx.doi.org/10.1093/nsr/nwab125DOI Listing

Publication Analysis

Top Keywords

mutation dual-oxidase
8
dual-oxidase gene
8
physical activity
8
energy expenditure
8
single-nucleotide mutation
8
metabolic phenotype
8
mutation
5
single nucleotide
4
nucleotide mutation
4
gene panda's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!