(cotton rose) is a deciduous shrub or small tree of the Malvaceae family. Here, we report a chromosome-scale assembly of the genome based on a combination of single-molecule sequencing and Hi-C technology. We obtained an optimized assembly of 2.68 Gb with a scaffold N50 length of 54.7 Mb. An integrated strategy of homology-based, , and transcriptome-based gene predictions identified 118,222 protein-coding genes. Repetitive DNA sequences made up 58.55% of the genome, and LTR retrotransposons were the most common repetitive sequence type, accounting for 53.15% of the genome. Through the use of Hi-C data, we constructed a chromosome-scale assembly in which Nanopore scaffolds were assembled into 46 pseudomolecule sequences. We identified important genes involved in anthocyanin biosynthesis and documented copy number variation in floral regulators. Phylogenetic analysis indicated that was closely related to , from which it diverged approximately 15.3 million years ago. The availability of cotton rose genome data increases our understanding of the species' genetic evolution and will support further biological research and breeding in cotton rose, as well as other Malvaceae species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896357PMC
http://dx.doi.org/10.3389/fpls.2022.818206DOI Listing

Publication Analysis

Top Keywords

cotton rose
16
chromosome-scale assembly
8
genome
5
high-quality chromosome-level
4
chromosome-level genome
4
genome insights
4
insights determinate
4
determinate flowering
4
flowering time
4
time color
4

Similar Publications

Photosensitizing compounds are eco-friendly promising organic dyes for managing insect pests without facing the risk of resistance. The photodynamic efficacy of four Photosensitizing compounds (rose Bengal, rhodamine B, methylene blue and methyl violet) was monitored against the third larval instar of Spodoptera littoralis (Boisduval), after exposure to sunlight. The LC values of the four compounds; rose Bengal, rhodamine B, methylene blue and methyl violet recorded 0.

View Article and Find Full Text PDF

Neuroinflammation plays an important role in the pathological cascade of Alzheimer's disease (AD) along with aggregation of extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein. In animal models of amyloidosis, local immune activation is centered around Aβ plaques, which are usually of uniform morphology, dependent on the transgenic model used. In postmortem human brains a diversity of Aβ plaque morphologies is seen including diffuse plaques (non-neuritic plaques, non-NP), dense-core plaques, cotton-wool plaques, and NP.

View Article and Find Full Text PDF

is a delicious honey wine traditionally processed in Ethiopia and Eritrea. This study aimed to investigate the standardization and characterization of high-quality . The ingredients for preparation were collected, and three formulations were created by varying the amounts of and honey.

View Article and Find Full Text PDF

This work presents the successful production of highly porous 3D nanofibrous hybrid scaffolds of polylactic acid (PLA)/polyethylene glycol (PEG) blends with the incorporation of calcium phosphate (CaP) bioceramics by a facile two-step process using the solution blow spinning (SBS) technique. CaP nanofibers were obtained at two calcium/phosphorus (Ca/P) ratios, 1.67 and 1.

View Article and Find Full Text PDF

Hibiscus mutabilis, commonly known as the cotton rose, is a widely cultivated ornamental and has been acclaimed as the representative flower of the 2024 World Horticultural Exposition. The growth and ornamental characteristics of Hibiscus mutabilis can be affected by drought stress. Therefore, we investigated the physiological and metabolic responses of drought-sensitive Hibiscus mutabilis JRX-1 and drought-tolerant Hibiscus mutabilis CDS-4 under drought stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!