The specificity of T cells is that each T cell has only one T cell receptor (TCR). A T cell clone represents a collection of T cells with the same TCR sequence. Thus, the number of different T cell clones in an organism reflects the number of different T cell receptors (TCRs) that arise from recombination of the V(D)J gene segments during T cell development in the thymus. TCR diversity and more specifically, the clone abundance distribution, are important factors in immune functions. Specific recombination patterns occur more frequently than others while subsequent interactions between TCRs and self-antigens are known to trigger proliferation and sustain naive T cell survival. These processes are TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation rates. We describe the heterogeneous steady-state population of naive T cells (those that have not yet been antigenically triggered) by using a mean-field model of a regulated birth-death-immigration process. After accounting for random sampling, we investigate how TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of clone abundance distributions (the number of different clones that are represented by a specific number of cells, or "clone counts"). By using reasonable physiological parameter values and fitting predicted clone counts to experimentally sampled clone abundances, we show that realistic levels of heterogeneity in immigration rates cause very little change to predicted clone-counts, but that modest heterogeneity in proliferation rates can generate the observed clone abundances. Our analysis provides constraints among physiological parameters that are necessary to yield predictions that qualitatively match the data. Assumptions of the model and potentially other important mechanistic factors are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891377 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.735135 | DOI Listing |
Front Immunol
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Introduction: T-lymphopenia (TLP) is a frequently observed condition in cancer patients, often exacerbated by conventional chemo/radiotherapy, which impairs the efficacy of subsequent immune checkpoint blockade (ICB) therapy. This study aimed to understand the impact of TLP on ICB responsiveness and explore potential therapeutic strategies to enhance antitumor immunity.
Methods: To investigate ICB responsiveness depending on the severity of TLP, first, we established TLP mouse models that mimic clinically observed mild and severe TLP through thymectomy and anti-Thy1-induced peripheral T cell depletion.
Sci Rep
January 2025
Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
Osteosarcoma (OS) is a prevalent invasive bone cancer, with numerous homeobox family genes implicated in tumor progression. This study aimed to develop a prognostic model using HOX family genes to assess osteosarcoma patient outcomes. Data from osteosarcoma patients in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts were collected.
View Article and Find Full Text PDFSci Rep
January 2025
Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands.
Radiation therapy is a common treatment modality for lung cancer, and resistance to radiation can significantly affect treatment outcomes. We recently described that lung cancer cells that express more germ cell cancer genes (GC genes, genes that are usually restricted to the germ line) can repair DNA double-strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation than cells that express fewer GC genes. The gene encoding TRIP13 appeared to play a large role in this malignant phenotype.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Endometrial cancer (EC) is a worldwide gynecologic malignancies, with a remarking increase of incidence and mortality rates in recent years. Growing evidence indicates that glucose metabolism reprogramming is the most representative metabolic signature of tumor cells and exploring its modulatory function in EC development will promote identifying potential EC therapeutic targets. IGFBP2 is an insulin-like growth factor binding protein which is closely associated with a variety of metabolic diseases.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:
Keloids are pathological scars characterized by excessive fibroblast proliferation, abnormal collagen deposition, and chronic inflammation, which often result in high recurrence rates and limited treatment success. Targeting BACH1 with gene therapy has shown promise in regulating fibroblast activity and reducing inflammation. However, effective delivery systems for targeted gene therapy in keloids remain a major challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!