A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AI-enabled radiologist in the loop: novel AI-based framework to augment radiologist performance for COVID-19 chest CT medical image annotation and classification from pneumonia. | LitMetric

A SARS-CoV-2 virus-specific reverse transcriptase-polymerase chain reaction (RT-PCR) test is usually used to diagnose COVID-19. However, this test requires up to 2 days for completion. Moreover, to avoid false-negative outcomes, serial testing may be essential. The availability of RT-PCR test kits is currently limited, highlighting the need for alternative approaches for the precise and rapid diagnosis of COVID-19. Patients suspected to be infected with SARS-CoV-2 can be assessed using chest CT scan images. However, CT images alone cannot be used for ruling out SARS-CoV-2 infection because individual patients may exhibit normal radiological results in the primary phases of the disease. A machine learning (ML)-based recognition and segmentation system was developed to spontaneously discover and compute infection areas in CT scans of COVID-19 patients. The computable assessment exhibited suitable performance for automatic infection region allocation. The ML models developed were suitable for the direct detection of COVID-19 (+). ML was confirmed to be a complementary diagnostic technique for diagnosing COVID-19(+) by forefront medical specialists. The complete manual delineation of COVID-19 often requires up to 225.5 min; however, the proposed RILML method decreases the delineation time to 7 min after four iterations of model updating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886865PMC
http://dx.doi.org/10.1007/s00521-022-07055-1DOI Listing

Publication Analysis

Top Keywords

rt-pcr test
8
covid-19 patients
8
covid-19
6
ai-enabled radiologist
4
radiologist loop
4
loop novel
4
novel ai-based
4
ai-based framework
4
framework augment
4
augment radiologist
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!