Glypican-3 (GPC3) is a serological biomarker for the diagnosis of Hepatocellular carcinoma (HCC), but it is a challenging task to develop a bioassay for determination of the trace GPC3 in serum. In this study, Bioluminescense immunoassay based on bifunctional nanobody-nanoluciferase fusion was developed with the ultra-sensitive feature to achieve this goal. First, nanobodies special against GPC-3 binder as biological recognition element were generated by immunization and phage display technology. Second, The best clone GPN2 was fused with nanoluciferase as a dual-functional immunoreagent to establish an ultra-sensitive bioluminescence enzyme immunoassay (BLEIA), which is 30 and 5 times more sensitive than the traditional colorimetric assay and fluorescent assay, respectively. The cross-reactivity analysis of BLEIA showed that there was no cross-reactivity with HCC related tumor markers AFP, CEA, CA19-9 and GPC1/GPC2. The limit of detection (LOD) of developed BLEIA was 1.5 ng/mL, which assured its application in the diagnosis of GPC3 in 94 serum samples. This study indicates that BLEIA based on nanobody-nanoluciferase fusion could be used as a useful tool for the diagnosis of HCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896807PMC
http://dx.doi.org/10.1016/j.snb.2021.129717DOI Listing

Publication Analysis

Top Keywords

nanobody-nanoluciferase fusion
12
bioluminescence enzyme
8
enzyme immunoassay
8
gpc3 serum
8
generation dual
4
dual functional
4
functional nanobody-nanoluciferase
4
fusion potential
4
potential bioluminescence
4
immunoassay trace
4

Similar Publications

Protein nanoscaffold enables programmable nanobody-luciferase immunoassembly for sensitive and simultaneous detection of aflatoxin B1 and ochratoxin A.

J Hazard Mater

January 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. Electronic address:

Mycotoxins produced by fungi can contaminate various foods and pose significant health risks. Ensuring food safety demands rapid, highly sensitive analytical techniques. One-step Bioluminescent Enzyme Immunoassays (BLEIAs) employing nanobody-nanoluciferase fusion proteins have recently garnered attention for operational simplicity and heightened sensitivity.

View Article and Find Full Text PDF

Nanobody-Nanoluciferase Fusion Protein-Enabled Immunoassay for Ochratoxin A in Coffee with Enhanced Specificity and Sensitivity.

Toxins (Basel)

October 2022

National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.

Ochratoxin A (OTA), one of the best-known mycotoxins, causes problems concerning food safety with potential toxic effects in humans and animals. So, it is crucial to develop simple and sensitive methods for the detection of OTA. Herein, a nanoluciferase-nanobody fusion protein (Nb28-Nluc)-retaining antibody recognition and enzymatic activity was first prepared, which was then applied as a bifunctional tracer to construct a one-step bioluminescent enzyme-linked immunosorbent assay (BLEIA) for OTA in coffee samples.

View Article and Find Full Text PDF

Glypican-3 (GPC3) is a serological biomarker for the diagnosis of Hepatocellular carcinoma (HCC), but it is a challenging task to develop a bioassay for determination of the trace GPC3 in serum. In this study, Bioluminescense immunoassay based on bifunctional nanobody-nanoluciferase fusion was developed with the ultra-sensitive feature to achieve this goal. First, nanobodies special against GPC-3 binder as biological recognition element were generated by immunization and phage display technology.

View Article and Find Full Text PDF

Compared with traditional polyclonal and monoclonal antibodies, nanobodies derived from camelid heavy-chain antibodies have several advantages including small size, unique structure and binding geometry, high stability, and robust expression yields in numerous systems. Nanobody-based assays can also exhibit superior performance for immunodetection. Here, we describe protocols for three nanobody-based immunoassays for the detection of small chemical contaminants in environmental or agricultural samples: enzyme-linked immunosorbent assay (ELISA), fluorescence enzyme immunoassay (FEIA), and bioluminescent enzyme immunoassay (BLEIA).

View Article and Find Full Text PDF

The non-toxic immunoassay for mycotoxins is being paid more attention due to its advantages of higher safety and cost savings by using anti-idiotype antibodies to substitute toxins. In this study, with tenuazonic acid (TeA), a kind of highly toxic mycotoxin as the target, an enhanced non-toxic immunoassay was developed based on the ferritin-displayed anti-idiotypic nanobody-nanoluciferase multimers. First, three specific β-type anti-idiotype nanobodies (AId-Nbs) bearing the internal image of TeA mycotoxin were selected from an immune phage display library.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!