In rice farming, the blast disease caused by Magnaporthe oryzae (T.T. Hebert) M.E. Barr. is one of the primary production constraints worldwide. The current blast management options such as blast-resistant varieties and spraying fungicides are neither durable nor commercially and environmentally compatible. In the present study, we investigated the antifungal and defense elicitor activity of potassium phosphite (Phi) against M. oryzae on elite rice cultivar BPT5204 (popularly known as Samba Mahsuri in India) and its transgenic rice variant (ptxD-OE) over-expressing a phosphite dehydrogenase enzyme. The Phi was evaluated both preventively and curatively on rice genotypes where the preventive spray of Phi outperformed the Phi curative application with significant reductions in both rice blast severity (35.67-60.49%) and incidence (22.27-53.25%). Moreover, the application of Phi increased the levels of photosynthetic pigments (Chlorophyll and Carotenoids) coupled with increased activity of defense enzymes (PAL, SOD, and APx). Besides, Phi application also induced the expression of defense-associated genes (OsCEBiP and OsPDF2.2) in the rice leaf. Furthermore, the Phi application reduced the reactive Malondialdehyde (lipid peroxidation) to minimize the cellular damage incited by Magnaporthe in rice. Overall, the present study showed the potential of Phi for blast suppression on rice as an alternative to the current excessive use of toxic fungicides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2021.105026DOI Listing

Publication Analysis

Top Keywords

rice
9
antifungal defense
8
defense elicitor
8
elicitor activity
8
activity potassium
8
potassium phosphite
8
blast disease
8
phi
8
phi application
8
blast
5

Similar Publications

Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.

View Article and Find Full Text PDF

Effects of Capsaicin on Masticatory and Swallowing Function.

J Oral Rehabil

January 2025

Department of Rehabilitation Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.

Introduction: Recent studies have shown that capsaicin improves the pharyngeal swallowing reflex. However, the mechanism by which capsaicin alters mastication and oesophageal function remains unclear. This study aimed to investigate the effects of capsaicin on masticatory and oesophageal function.

View Article and Find Full Text PDF

Engineering the biosynthetic pathway of bacterial cellulose in rice to improve the performance of straw-derived paper.

Plant Commun

January 2025

Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding,China, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms ,Ministry of Agriculture and Rural Affairs, China. Electronic address:

View Article and Find Full Text PDF

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

Dufulin Impacts Plant Defense Against Tomato Yellow Leaf Curl Virus Infecting Tomato.

Viruses

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!