Pilot-scale electro-oxidation equipment with a functional capacity of 0.2 m/hr, with titanium electrodes coated with TiO/RuO/IrO as both anodes and cathodes, was designed. It was installed on the premises of a commercial tannery. The waste streams from all the unit processes were combined. The composite wastewater, after conventional pre-treatment was subjected to electro-oxidation. The treated wastewater was reused four times with intermittent electro-oxidation treatment, after each reuse. EO could bring about a significant reduction in pollution load. Reduction in BOD, COD, TKN and TSS was 92%, 87.5%, 96.2% and 94.6% respectively. Generation of OCl radicals, during electro-oxidation, were ascertained with DMPO-spin trapping techniques using Electron Spin Resonance (ESR) spectroscopy. The characteristics of the treated wastewater indicated that the wastewater was fit for reuse. No significant change in the quality of the water after each reuse was observed. The physical properties of the leathers obtained following the reuse processes were akin to those of the control leathers, which was indicative that the reuse did not cause adverse quality deviations. This technique could provide the plausibility for minizine the discharge of wastewater to near-zero level.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2022.2049887DOI Listing

Publication Analysis

Top Keywords

treated wastewater
8
wastewater
6
electro-oxidation
5
reuse
5
electro-oxidation tannery
4
tannery wastewater
4
wastewater achieve
4
achieve discharge
4
discharge step
4
step sustainability
4

Similar Publications

Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs).

View Article and Find Full Text PDF

The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.

View Article and Find Full Text PDF

Recovery of wastewater from the pulp and paper industry by cellulose acetate reverse osmosis membrane.

Int J Biol Macromol

January 2025

Key Laboratory of Pulp and Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.

The high salt content and color are regarded as a major challenge to the reuse of industrial wastewater. In the present study, the application of cellulose acetate reverse osmosis (RO) membrane in combination with microfiltration (MF), ultrafiltration (UF), or nanofiltration (NF) process was investigated in the purification of biological and Fenton treated pulp and paper wastewater. In the first step, the effect of pH and inlet pressures on the membrane fouling was investigated.

View Article and Find Full Text PDF

Light-driven in-situ synthesis of nano-sulfur and graphene oxide composites for efficient removal of heavy metal ions.

J Hazard Mater

January 2025

State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.

View Article and Find Full Text PDF

High performance ozone nanobubbles based advanced oxidation processes (AOPs) for degradation of organic pollutants under high pollutant loading.

J Environ Manage

January 2025

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!