Background: Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity.

Methods: We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed.

Results: We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology.

Conclusions: Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178167PMC
http://dx.doi.org/10.1002/jcsm.12950DOI Listing

Publication Analysis

Top Keywords

iron
11
duchenne muscular
8
muscular dystrophy
8
oxidative stress
8
total elemental
8
elemental iron
8
mdx mice
8
mice
5
iron overload
4
overload impaired
4

Similar Publications

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

CD163, a macrophage-specific receptor, plays a critical role in scavenging hemoglobin released during hemolysis, protecting against oxidative effects of heme iron. In the bloodstream, hemoglobin is bound by haptoglobin, leading to its immediate endocytosis by CD163. While haptoglobin's structure and function are well understood, CD163's structure and its interaction with the haptoglobin-hemoglobin complex have remained elusive.

View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!