A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

External validation of the computerized analysis of TRUS of the prostate with the ANNA/C-TRUS system: a potential role of artificial intelligence for improving prostate cancer detection. | LitMetric

Purpose: Prostate cancer (PCa) imaging has been revolutionized by the introduction of multi-parametric Magnetic Resonance Imaging (mpMRI). Transrectal ultrasound (TRUS) has always been considered a low-performance modality. To overcome this, a computerized artificial neural network analysis (ANNA/C-TRUS) of the TRUS based on an artificial intelligence (AI) analysis has been proposed. Our aim was to evaluate the diagnostic performance of the ANNA/C-TRUS system and its ability to improve conventional TRUS in PCa diagnosis.

Methods: We retrospectively analyzed data from 64 patients with PCa and scheduled for radical prostatectomy who underwent TRUS followed by ANNA/C-TRUS analysis before the procedure. The results of ANNA/C-TRUS analysis with whole mount sections from final pathology.

Results: On a per-sectors analysis, sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV) and accuracy were 62%, 81%, 80%, 64% and 78% respectively. The values for the detection of clinically significant prostate cancer were 69%, 77%, 88%, 50% and 75%. The diagnostic values for high grade tumours were 70%, 74%, 91%, 41% and 74%, respectively. Cancer volume (≤ 0.5 or greater) did not influence the diagnostic performance of the ANNA/C-TRUS system.

Conclusions: ANNA/C-TRUS represents a promising diagnostic tool and application of AI for PCa diagnosis. It improves the ability of conventional TRUS to diagnose prostate cancer, preserving its simplicity and availability. Since it is an AI system, it does not hold the inter-observer variability nor a learning curve. Multicenter biopsy-based studies with the inclusion of an adequate number of patients are needed to confirm these results.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00345-022-03965-wDOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
anna/c-trus system
8
artificial intelligence
8
diagnostic performance
8
performance anna/c-trus
8
conventional trus
8
anna/c-trus analysis
8
anna/c-trus
7
analysis
6
trus
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!