Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Prostate cancer (PCa) imaging has been revolutionized by the introduction of multi-parametric Magnetic Resonance Imaging (mpMRI). Transrectal ultrasound (TRUS) has always been considered a low-performance modality. To overcome this, a computerized artificial neural network analysis (ANNA/C-TRUS) of the TRUS based on an artificial intelligence (AI) analysis has been proposed. Our aim was to evaluate the diagnostic performance of the ANNA/C-TRUS system and its ability to improve conventional TRUS in PCa diagnosis.
Methods: We retrospectively analyzed data from 64 patients with PCa and scheduled for radical prostatectomy who underwent TRUS followed by ANNA/C-TRUS analysis before the procedure. The results of ANNA/C-TRUS analysis with whole mount sections from final pathology.
Results: On a per-sectors analysis, sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV) and accuracy were 62%, 81%, 80%, 64% and 78% respectively. The values for the detection of clinically significant prostate cancer were 69%, 77%, 88%, 50% and 75%. The diagnostic values for high grade tumours were 70%, 74%, 91%, 41% and 74%, respectively. Cancer volume (≤ 0.5 or greater) did not influence the diagnostic performance of the ANNA/C-TRUS system.
Conclusions: ANNA/C-TRUS represents a promising diagnostic tool and application of AI for PCa diagnosis. It improves the ability of conventional TRUS to diagnose prostate cancer, preserving its simplicity and availability. Since it is an AI system, it does not hold the inter-observer variability nor a learning curve. Multicenter biopsy-based studies with the inclusion of an adequate number of patients are needed to confirm these results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00345-022-03965-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!