A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. | LitMetric

This study aims to provide numerous environmental research approaches to understand the formation of mineral and organic mercury compounds in self-heating coal waste dumps of the Upper Silesian Coal Basin (USCB). The results are combined with environmental and health risk assessments. The mineralogy comprised accessory minerals in the fine fraction of thermally affected waste, i.e., Hg sulfides, most likely cinnabar or metacinnabar. Moreover, other metals, e.g., Pb, Zn and Cu, were found as sulfide forms. Apart from Hg, the ICP-ES/MS data confirmed the high content of Mn, Zn, Pb, Hg, Cr and Ba in these wastes. The high concentration of available Hg resulted in elevated MeHg concentrations in the dumps. There were no correlations or trends between MeHg concentrations and elemental Hg, TS, TOC, and pH. Furthermore, we did not detect microbial genes responsible for Hg methylation. The organic compounds identified in waste and emitted gases, such as organic acids, or free methyl radicals, common in such burn environments, could be responsible for the formation of MeHg. The concentration levels of gases, e.g., benzene, formaldehyde, NH, emitted by the vents, reached or surpassed acceptable levels numerous times. The potential ecological and human health risks of these dumps were moderate to very high due to the significant influence of the high Hg concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128542DOI Listing

Publication Analysis

Top Keywords

high concentrations
8
thermally waste
8
waste dumps
8
mehg concentrations
8
high
5
concentrations hgs
4
mehg
4
hgs mehg
4
mehg toxic
4
toxic gas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!