A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling learnable electrical synapse for high precision spatio-temporal recognition. | LitMetric

Modeling learnable electrical synapse for high precision spatio-temporal recognition.

Neural Netw

Institute of Automaton, Chinese Academy of Science, Beijing 100190, China; University of Chinese Academy of Science, Beijing 100190, China. Electronic address:

Published: May 2022

Bio-inspired recipes are being introduced to artificial neural networks for the efficient processing of spatio-temporal tasks. Among them, Leaky Integrate and Fire (LIF) model is the most remarkable one thanks to its temporal processing capability, lightweight model structure, and well investigated direct training methods. However, most learnable LIF networks generally take neurons as independent individuals that communicate via chemical synapses, leaving electrical synapses all behind. On the contrary, it has been well investigated in biological neural networks that the inter-neuron electrical synapse takes a great effect on the coordination and synchronization of generating action potentials. In this work, we are engaged in modeling such electrical synapses in artificial LIF neurons, where membrane potentials propagate to neighbor neurons via convolution operations, and the refined neural model ECLIF is proposed. We then build deep networks using ECLIF and trained them using a back-propagation-through-time algorithm. We found that the proposed network has great accuracy improvement over traditional LIF on five datasets and achieves high accuracy on them. In conclusion, it reveals that the introduction of the electrical synapse is an important factor for achieving high accuracy on realistic spatio-temporal tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2022.02.006DOI Listing

Publication Analysis

Top Keywords

electrical synapse
12
neural networks
8
spatio-temporal tasks
8
well investigated
8
electrical synapses
8
high accuracy
8
electrical
5
modeling learnable
4
learnable electrical
4
synapse high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!