Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bio-inspired recipes are being introduced to artificial neural networks for the efficient processing of spatio-temporal tasks. Among them, Leaky Integrate and Fire (LIF) model is the most remarkable one thanks to its temporal processing capability, lightweight model structure, and well investigated direct training methods. However, most learnable LIF networks generally take neurons as independent individuals that communicate via chemical synapses, leaving electrical synapses all behind. On the contrary, it has been well investigated in biological neural networks that the inter-neuron electrical synapse takes a great effect on the coordination and synchronization of generating action potentials. In this work, we are engaged in modeling such electrical synapses in artificial LIF neurons, where membrane potentials propagate to neighbor neurons via convolution operations, and the refined neural model ECLIF is proposed. We then build deep networks using ECLIF and trained them using a back-propagation-through-time algorithm. We found that the proposed network has great accuracy improvement over traditional LIF on five datasets and achieves high accuracy on them. In conclusion, it reveals that the introduction of the electrical synapse is an important factor for achieving high accuracy on realistic spatio-temporal tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2022.02.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!