Objectives: Normal cellular function requires a rate of ATP production sufficient to meet demand. In most neurodegenerative diseases (including Amyotrophic Lateral Sclerosis [ALS]), mitochondrial dysfunction is postulated raising the possibility of impaired ATP production and a need for compensatory maneuvers to sustain the ATP production/demand balance. We investigated intermediary metabolism of neurons expressing familial ALS (fALS) genes and interrogated the functional consequences of glycolysis genes in fitness assays and neuronal survival.

Methods: We created a pure neuronal model system for isotopologue investigations of fuel utilization. In a yeast platform we studied the functional contributions of glycolysis genes in a growth fitness assay iafter expressing of a fALS gene.

Results: We find in our rodent models of fALS, a reduction in neuronal lactate production with maintained or enhanced activity of the neuronal citric acid cycle. This rewiring of metabolism is associated with normal ATP levels, bioenergetics, and redox status, thus supporting the notion that gross mitochondrial function is not compromised in neurons soon after expressing fALS genes. Genetic loss-of-function manipulation of individual steps in the glycolysis and the pentose phosphate pathway blunt the negative phenotypes seen in various fALS models.

Conclusions: We propose that neurons adjust fuel utilization in the setting of neurodegenerative disease-associated alteration in mitochondrial function in a baleful manner and targeting this process can be healthful.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958550PMC
http://dx.doi.org/10.1016/j.molmet.2022.101468DOI Listing

Publication Analysis

Top Keywords

familial als
8
atp production
8
neurons expressing
8
fals genes
8
glycolysis genes
8
fuel utilization
8
expressing fals
8
mitochondrial function
8
fals
5
neurons
4

Similar Publications

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disease of motor neurons, presenting with relentlessly progressive muscle atrophy and weakness. More than fifty genes carrying causative or disease-modifying variants have been identified since the 1990s, when the first ALS-associated variant in the gene SOD1 was discovered. The most commonly mutated ALS genes in the European populations include the C9orf72, SOD1, TARDBP and FUS.

View Article and Find Full Text PDF

Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.

View Article and Find Full Text PDF

Pathogenic variants in the superoxide dismutase 1 (SOD1) gene were the first identified genetic cause of amyotrophic lateral sclerosis (ALS), in 1993. This discovery enabled the development of transgenic rodent models for studying the biology of SOD1 ALS. The understanding that SOD1 ALS is driven by a toxic gain-of-function mutation has led to therapeutic strategies that aim to lower concentrations of SOD1 protein, an endeavour that has been complicated by the phenotypic heterogeneity of SOD1 ALS.

View Article and Find Full Text PDF

Context: Heart failure has high, growing global prevalence, morbidity and mortality, and is a leading cause of death with serious health-related suffering in low- and middle-income countries. Person-centred care (PCC) is a critical component of high-quality healthcare and is particularly vital in the context of a serious illness such as heart failure. However, there are limited data exploring PCC in this population in low- and middle-income settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!