Parkinson's disease (PD) is commonly treated with dopaminergic medication, which enhances some, while impairing other cognitive functions. It can even contribute to impulse control disorder and addiction. We describe the history of research supporting the dopamine overdose hypothesis, which accounts for the large within-patient variability in dopaminergic medication effects across different tasks by referring to the spatially non-uniform pattern of dopamine depletion in dorsal versus ventral striatum. However, there is tremendous variability in dopaminergic medication effects not just within patients across distinct tasks, but also across different patients. In the second part of this chapter we review recent studies addressing the large individual variability in the negative side effects of dopaminergic medication on functions that implicate dopamine, such as value-based learning and choice. These studies begin to unravel the mechanisms of dopamine overdosing, thus revising the strict version of the overdose hypothesis. For example, the work shows that the canonical boosting of reward-versus punishment-based choice by medication is greater in patients with depression and a non-tremor phenotype, which both implicate, among other pathology, more rather than less severe dysregulation of the mesolimbic dopamine system. Future longitudinal cohort studies are needed to identify how to optimally combine different clinical, personality, cognitive, neural, genetic and molecular predictors of detrimental medication effects in order to account for as much of the relevant variability as possible. This will provide a useful tool for precision neurology, allowing individual and contextual tailoring of (the dose of) dopaminergic medication in order to maximize its cognitive benefits, yet minimize its side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pbr.2022.01.012 | DOI Listing |
J Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Background: Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies.
Objectives: To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients.
Clin Neuropsychol
January 2025
Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
Despite significant progress in understanding the factors influencing cognitive function in Parkinson's disease (PD), there is a notable gap in data representation for the Latinx population. This study aims to evaluate the contributors to and disparities in cognitive performance among Latinx patients with PD. A retrospective analysis was conducted based on cross-sectional data encompassing demographic, environmental, motor, and non-motor disease characteristics from the Latin American Research Consortium on the Genetics of PD (LARGE-PD) and the Parkinson's Progression Markers Initiative (PPMI) cohorts.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Histology & Embryology, Rasht - Parastar Street, Guilan University of Medical Sciences, 13111-41937, Iran.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons (DA) which can be caused by environmental and genetic factors. lncRNAs have emerged as an important regulatory layer in neurodegenerative disorders, including PD. In this study, we investigated and validated lncRNAs that may serve as diagnostic or therapeutic targets for PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!