Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review.

Lancet Infect Dis

Department of Trauma Surgery, UZ Leuven, Leuven, Belgium; Locomotor and Neurological Disorders, Department of Development and Regeneration, KU Leuven, Leuven, Belgium. Electronic address:

Published: August 2022

According to the latest reports from WHO, the incidence of antibiotic-resistant bacterial infections is increasing worldwide, resulting in increased morbidity and mortality and a rising pressure on health-care systems. However, the development of new antibiotics is an expensive and time-consuming process, urging scientists to seek alternative antimicrobial strategies. Over the past few decades, the concept of therapeutic administration of bacteriophages (also known as phages) has gained popularity worldwide. Although conceptually promising, the widespread implementation of phage therapy in routine clinical practice is restricted by the scarcity of safety and efficacy data obtained according to the strict standards of the applicable clinical trial regulations. In this systematic review, we list clinical data published between Jan 1, 2000 and Aug 14, 2021 on the safety and efficacy of phage therapy for difficult-to-treat bacterial infections, and provide an overview of trials and case studies on the use of phage therapy in several medical disciplines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(21)00612-5DOI Listing

Publication Analysis

Top Keywords

phage therapy
16
safety efficacy
12
efficacy phage
8
therapy difficult-to-treat
8
systematic review
8
bacterial infections
8
phage
4
therapy
4
difficult-to-treat infections
4
infections systematic
4

Similar Publications

The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 11 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics.

View Article and Find Full Text PDF

Background: Oral infectious diseases, such as dental caries, periodontitis and periapical periodontitis, are often complicated by causative bacterial biofilm formation and significantly impact human oral health and quality of life. Bacteriophage (phage) therapy has emerged as a potential alternative with successful applications in antimicrobial trials. While therapeutic use of phages has been considered as effective treatment of some infectious diseases, related research focusing on oral infectious diseases is few and lacks attention.

View Article and Find Full Text PDF

The non-nutritive sweetener rebaudioside a enhances phage infectivity.

Sci Rep

January 2025

Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.

Non-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment.

View Article and Find Full Text PDF

Using BW25113 as a host, we isolated a novel lytic phage from the commercial poly-specific therapeutic phage cocktail Sextaphage (Microgen, Russia). We provide genetic and phenotypic characterization of the phage and describe its host range on the ECOR collection of reference strains. The phage, hereafter named Sxt1, is a close relative of classical coliphage T3 and belongs to the genus, yet its internal virion proteins, forming an ejectosome, differ from those of T3.

View Article and Find Full Text PDF

Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in helps in better adapting the phages to the systems present in the pathogenic bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!