The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114117 | DOI Listing |
Crit Care
January 2025
Departamento de Medicina, Hospital Clínico Universidad de Chile, Unidad de Pacientes Críticos, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile.
Background: Double cycling with breath-stacking (DC/BS) during controlled mechanical ventilation is considered potentially injurious, reflecting a high respiratory drive. During partial ventilatory support, its occurrence might be attributable to physiological variability of breathing patterns, reflecting the response of the mode without carrying specific risks.
Methods: This secondary analysis of a crossover study evaluated DC/BS events in hypoxemic patients resuming spontaneous breathing in cross-over under neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV +), and pressure support ventilation (PSV).
Mol Genet Metab
December 2024
National Human Genome Research Institute, Bethesda, MD, USA. Electronic address:
Background: Impaired oxidation of branched chain amino acids may give rise to volatile organic compounds (VOCs). We hypothesized that VOCs will be present in exhaled breath of participants with propionic acidemia (PA), and their relative abundance would correlate with clinical and biochemical characteristics of the disease.
Methods: We enrolled 5 affected participants from a natural history study of PA (ClinicalTrials.
J Biomech
January 2025
School of Mechanical Engineering, Kyungpook National University & IEDT, Daegu, South Korea. Electronic address:
Cement dust is a primary contributor to air pollution and is responsible for causing numerous respiratory diseases. The impact of cement dust exposure on the respiratory health of residents is increasing owing to the demand for construction associated with urbanization. Long-term inhalation of cement dust leads to a reduction in lung function, alterations in airway structure, increased inhalation and exhalation resistance, and heightened work of breath.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
Background: Advances in imaging technology have enhanced the detection of pulmonary nodules. However, determining malignancy often requires invasive procedures or repeated radiation exposure, underscoring the need for safer, noninvasive diagnostic alternatives. Analyzing exhaled volatile organic compounds (VOCs) shows promise, yet its effectiveness in assessing the malignancy of pulmonary nodules remains underexplored.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).
Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!