Thermoanaerobacter thermocopriae-derived thermostable cycloisomaltooligosaccharide (CI)-forming enzymes catalyze the production of CIs from dextran. The primary structure of the enzyme is comprised of CI glucanotransferase (TtCITase) at the N-terminal region and long isomaltooligosaccharide-forming enzyme (TtTGase) at the C-terminal region connected by carbohydrate-binding module family 35 (CBM, TtCBM). Three truncated mutants of CI-forming enzymes were successfully produced in Corynebacterium glutamicum, a food-grade host system, and their biochemical properties were characterized. The enzymes had optimum at pH 6.0 and pH-stability (5.0-12.0). Three enzymes had optimum temperature over 55 °C and they maintained 80% activity at 55 °C for 2 h, 12 h, and 18 h, respectively. Enzymes without CBM showed weaker allosteric behavior than those of other enzymes, which suggests the important role of CBM in allosteric behavior. However, CBM bearing enzymes showed high production of CIs with various degree of polymerization. These enzymes have potential application as the encapsulating material for insoluble pharmaceutical biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2022.110023DOI Listing

Publication Analysis

Top Keywords

carbohydrate-binding module
8
enzymes
8
ci-forming enzymes
8
production cis
8
enzymes optimum
8
allosteric behavior
8
module cycloisomaltooligosaccharide
4
cycloisomaltooligosaccharide glucanotransferase
4
glucanotransferase thermoanaerobacter
4
thermoanaerobacter thermocopriae
4

Similar Publications

Carbohydrate-binding modules (CBMs) are essential virulence factors in phytopathogens, particularly the extensively studied members from the CBM50 gene family, which are known as lysin motif (LysM) effectors and which play crucial roles in plant-pathogen interactions. However, the function of CBM50 in has yet to be fully studied. In this study, we identified seven CBM50 genes from the genome through complete sequence analysis and functional annotation.

View Article and Find Full Text PDF

Batrachochytrium dendrobatidis (Bd) is responsible for mass extinctions and extirpations of amphibians, mainly driven by the Global Panzootic Lineage (BdGPL). BdGPL isolate JEL423 is a commonly used reference strain in studies exploring the evolution, epidemiology and pathogenicity of chytrid pathogens. These studies have been hampered by the fragmented, erroneous and incomplete B.

View Article and Find Full Text PDF

Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

Arch Biochem Biophys

December 2024

The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.

View Article and Find Full Text PDF

The Effect of CBM1 and Linker on the Oxidase, Peroxidase and Monooxygenase Activities of AA9 LPMOs: Insight into Their Correlation with the Nature of Reductants and Crystallinity of Celluloses.

Int J Mol Sci

November 2024

The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

This study explores the effect of carbohydrate-binding module 1 (CBM1) and the linker on the function of auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs), with a particular focus on monooxygenase activity, using different crystallinity celluloses and electron donors. The tested C1/C4-oxidizing AA9 LPMOs exhibited higher oxidase and peroxidase activities compared to those of the C4-oxidizing AA9 LPMOs. While the presence of CBM1 promoted cellulose-binding affinity, it reduced the oxidase activity of modular AA9 LPMOs.

View Article and Find Full Text PDF

The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility.

Plant Cell

December 2024

State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China.

Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!