A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation. | LitMetric

The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified TiCT MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m g, a high mass activity of 1526.5 mA mg, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/TiCT model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.02.111DOI Listing

Publication Analysis

Top Keywords

methanol oxidation
12
interfacial engineering
8
worm-shaped palladium
8
palladium nanocrystals
8
strong electronic
8
engineering worm-shaped
4
nanocrystals anchored
4
anchored polyelectrolyte-modified
4
polyelectrolyte-modified mxene
4
mxene nanosheets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!