A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbohydrate-carbohydrate interaction drives the preferential insertion of dirhamnolipid into glycosphingolipid enriched membranes. | LitMetric

Carbohydrate-carbohydrate interaction drives the preferential insertion of dirhamnolipid into glycosphingolipid enriched membranes.

J Colloid Interface Sci

Laboratoire de Biophysique Moléculaire aux Interfaces, Structure Fédérative de Recherche Condorcet, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium. Electronic address:

Published: June 2022

Rhamnolipids (RLs) are among the most important biosurfactants produced by microorganisms, and have been widely investigated because of their multiple biological activities. Their action appears to depend on their structural interference with lipid membranes, therefore several studies have been performed to investigate this aspect. We studied by X-ray scattering, neutron reflectometry and molecular dynamic simulations the insertion of dirhamnolipid (diRL), the most abundant RL, in model cellular membranes made of phospholipids and glycosphingolipids. In our model systems the affinity of diRL to the membrane is highly promoted by the presence of the glycosphingolipids and molecular dynamics simulations unveil that this evidence is related to sugar-sugar attractive interactions at the membrane surface. Our results improve the understanding of the plethora of activities associated with RLs, also opening new perspectives in their selective use for pharmaceutical and cosmetics formulations. Additionally, they shed light on the still debated role of carbohydrate-carbohydrate interactions as driving force for molecular contacts at membrane surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.02.120DOI Listing

Publication Analysis

Top Keywords

insertion dirhamnolipid
8
membrane surface
8
carbohydrate-carbohydrate interaction
4
interaction drives
4
drives preferential
4
preferential insertion
4
dirhamnolipid glycosphingolipid
4
glycosphingolipid enriched
4
enriched membranes
4
membranes rhamnolipids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!