Knowledge on how food processing conditions and protein composition can modulate individual or food matrix protein functionality is crucial for designing new protein ingredients. In this regard, we investigated how heat treatment and protein composition influence physicochemical and functional properties of Moringa oleifera seed protein isolate. Results showed that changes in processing temperature induced modifications in the conformation affecting the hydrophobic core of proteins. Protein isolate was more soluble at room temperature whereas prolamin fraction presented high solubility at 70 °C. Glutelin showed higher emulsifying properties at all temperatures. Protein composition also significantly affected physicochemical and functional properties of protein isolate. Increasing soluble glutelin enhanced solubility while increasing albumin, globulin and glutelin decreased hydrophobicity of the isolate. Likewise, increasing soluble globulin improved emulsifying capacity, and emulsion stability of the isolate was negatively affected by increase in albumin and glutelin. These findings could enhance application of Moringa oleifera protein in food formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.132546DOI Listing

Publication Analysis

Top Keywords

functional properties
12
moringa oleifera
12
protein composition
12
protein isolate
12
protein
9
heat treatment
8
oleifera seed
8
physicochemical functional
8
increasing soluble
8
isolate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!