Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes.

Plant Physiol Biochem

Institute of Crop Science and Resource Conservation (INRES), Department of Crop Genetics and Biotechnology, Rheinische Friedrich-Wilhelms University of Bonn, Germany. Electronic address:

Published: May 2022

Drought is a big challenge for agricultural production. Root attributes are the important target traits for breeding high-yielding sustainable wheat varieties against ever changing climatic conditions. However, the transcriptomic of wheat concerning root architecture remained obscure. Here, we explored RNA-Seq based transcriptome to dissect putative genes involved in root system variations in naturally occurring six genotypes (drought-tolerant and sensitive) of wheat. Global RNA-Seq based root transcriptome analysis revealed single nucleotide polymorphisms (SNPs) variations and differentially expressed genes. Putative 56 SNPs were identified related to 15 genes involved in root architecture. Enrichment of these genes using GO terms demonstrated that differentially expressed genes (DEGs) are divided into sub-categories implicated in molecular functions, cellular components and biological processes. The KEGG analysis of DEGs in each comparison of genotype include metabolic, biosynthesis of secondary metabolites, microbial metabolism in diverse environments and biosynthesis of antibiotics. A deeper insight into DEGs unveiled various pathways involved in drought response and positive gravitropism. These genes belong to various transcription factor families such as DOF, C3H, MYB, and NAC involved in root developmental and stress-related pathways. Local White and UZ-11-CWA-8, which are drought-tolerant genotypes, harbor over-representation of most of DEGs or transcription factors. Notably, a microtubule-associated protein MAPRE1 belonging to RP/EB family recruited in positive gravitropism was enriched. Real-time PCR analysis revealed expression of MAPRE1 and PAL genes is consistent with RNA-seq data. The presented data and genetic resources seem valuable for providing genes involved in the root system architecture of drought-tolerant and susceptible genotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.02.025DOI Listing

Publication Analysis

Top Keywords

involved root
16
root architecture
12
genes involved
12
root
8
architecture drought-tolerant
8
drought-tolerant sensitive
8
sensitive wheat
8
rna-seq based
8
genes
8
root system
8

Similar Publications

In today's debate about a user oriented humanistic turn in the field of mental health care, the early Foucault is once again relevant. In his works from 1954 Foucault shows that the root of understanding mental phenomena is not to be found in universal medical concepts and methods, but in the reflection on lived experiences and in the human being itself. In accordance with contemporary social, community, and cultural psychologists, such as Brinkmann, Kinderman and Prilleltensky, Foucault is critical to the psychology's medical foundations.

View Article and Find Full Text PDF

Microscopic augmented reality calibration with contactless line-structured light registration for surgical navigation.

Med Biol Eng Comput

January 2025

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.

View Article and Find Full Text PDF

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction.

Exp Cell Res

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:

SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.

View Article and Find Full Text PDF

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!