Purpose: To evaluate the accuracy and precision of postoperative coronal plane alignment using 3D-printed patient-specific instrumentation (PSI) in the setting of proximal tibial or distal femoral osteotomies.
Methods: A systematic review evaluating the accuracy of 3D-printed PSI for coronal plane alignment correcting knee osteotomies was performed. The primary outcomes were accuracy of coronal plane limb alignment correction and number of correction outliers. Secondary variables were duration of surgery, number of intraoperative fluoroscopic images, complications, cost, and clinical outcomes (as applicable).
Results: Ninety-three studies were identified, and 14 were included in the final analysis. Overall, mean postoperative deviation from target correction ranged from 0.3° to 1° for all studies using hip-knee angle measurements and 2.3% to 4.9% for all studies using weight-bearing line measurements. The incidence of correction outliers was assessed in 8 total studies and ranged from 0 to 25% (total n = 10 knees) of patients corrected with 3D-printed PSI. Osteotomies performed with 3D-printed cutting guides or wedges demonstrated significantly shorter operative times (P < .05) and fewer intraoperative fluoroscopic images (P < .05) than control groups in four case control studies.
Conclusion: Patients undergoing distal femoral osteotomy or proximal tibial osteotomy procedures with 3D-printed patient-specific cutting guides and wedges had highly accurate coronal plane alignment with a low rate of outliers. Patients treated with 3D printed PSI also demonstrated significantly shorter operative times and decreased intraoperative fluoroscopy when compared to conventional techniques.
Level Of Evidence: Level IV, systematic review of Level III-IV studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arthro.2022.02.023 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Medical Equipment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity, and up to now, there has been no literature reporting the analysis of a large sample of X-ray imaging parameters based on artificial intelligence (AI) for it. This study is based on the accurate and rapid measurement of x-ray coronal imaging parameters in AIS patients by AI, to explore the differences and correlations, and to further investigate the risk factors in different groups, so as to provide a theoretical basis for the diagnosis and surgical treatment of AIS.
Methods: Retrospective analysis of 3192 patients aged 8-18 years who had a full-length orthopantomogram of the spine and were diagnosed with AIS at the First Affiliated Hospital of Zhengzhou University from January 2019 to March 2024.
Due to the low contrast of abdominal CT (Computer Tomography) images and the similar color and shape of the liver to other organs such as the spleen, stomach, and kidneys, liver segmentation presents significant challenges. Additionally, 2D CT images obtained from different angles (such as sagittal, coronal, and transverse planes) increase the diversity of liver morphology and the complexity of segmentation. To address these issues, this paper proposes a Detail Enhanced Convolution (DE Conv) to improve liver feature learning and thereby enhance liver segmentation performance.
View Article and Find Full Text PDFGait Posture
December 2024
Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, United States; Shriners Children's Chicago, 2211 N. Oak Park Ave, Chicago, IL 60707, United States.
Background: Understanding midfoot joint kinetics is valuable for improved treatment of foot pathologies. Segmental foot kinetics cannot currently be obtained in a standard gait lab without the use of multiple force plates or a pedobarographic plate overlaid with a force plate due to the single ground reaction force (GRF) vector.
Research Question: Can an algorithm be created to distribute the GRF into multiple segmental vectors that will allow for calculation of accurate midfoot and ankle moments?
Methods: 20 pediatric subjects (10 typically developing, 10 with foot pathology) underwent multi-segment foot gait analysis using the Milwaukee Foot Model.
J Forensic Odontostomatol
December 2024
Department of Oral Medicine and Radiology, Army College of Dental Sciences.
Objectives: The study aims to evaluate the pulp-to-tooth area ratio in permanent maxillary central incisors, lateral incisors, and canines for age estimation using three-dimensional cone beam computed tomography images.
Methods: Hundred cone-beam computed tomography (CBCT) images of patients aged between 12-70 years were retrospectively studied using NNT Viewer software version 13. Pulpal and teeth area were evaluated with the "area tool" in the acquired images in all three planes, and the pulp-to-tooth area ratio (PTR) was calculated with the measurements obtained.
Anticancer Res
January 2025
Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background/aim: The efficacy of preoperative chemoradiotherapy (CRT) in lower rectal cancer is determined by its effects on the primary tumor. However, the effects on the mesorectum have not been investigated. Furthermore, edema in the dissection planes is frequently observed after postoperative CRT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!