Sperm are susceptible to excessive reactive oxygen species (ROS). Spermine and spermidine are secreted in large amounts by the prostate and potent natural free radical scavengers and protect cells against redox disorder. Thus, we used boar sperm as a model to study the polyamines uptake and elucidate whether polyamines protected sperm from ROS stress. Seven mature and fertile Duroc boars (aged 15 to 30 mo) were used in this study. In experiment 1, spermine and spermidine (3.6 ± 0.3 and 3.3 ± 0.2 mmol/L, respectively) were abundant in seminal plasma, and the content of polyamine decreased (P < 0.05) after preservation at 17 °C for 7 d or incubation at 37 °C for 6 h. In experiment 2, using labeling of spermine or spermidine by conjugation with fluorescein isothiocyanate and ultra-high-performance liquid chromatography, we found that the accumulation of spermine or spermidine in sperm was inhibited by quinidine and dl-tetrahydropalmatine (THP, organic cation transporters [OCT] inhibitors, P < 0.05), but not mildronate and l-carnitine (organic cation/carnitine transporter [OCTN] inhibitors, P > 0.05). In experiment 3, the addition of spermine or spermidine (0.5 mmol/L) in the extender resulted in higher motility, plasma membrane and acrosome integrity, and lower ROS level after preservation in vitro at 17 °C for 7 d (P < 0.05). In experiment 4, in the condition of oxidative stress (treatment with H2O2 at 37 °C for 2 h), the addition of spermine (1 mmol/L) or spermidine (0.5 mmol/L) in extender increased activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase; reduced glutathione and oxidized glutathione ratio (P < 0.05); and alleviate oxidative stress-induced lipid peroxidation, DNA damage, mitochondrial membrane potential (ΔΨm) decline, adenosine triphosphate depletion, and intracellular calcium concentration ([Ca2+]i) overload (P < 0.05), thereby improving boar sperm motility, the integrity of plasma membrane and acrosome (P < 0.05) in vitro. These data suggest that spermine and spermidine alleviate oxidative stress via the antioxidant capacity, thereby improving the efficacy of boar semen preservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030141 | PMC |
http://dx.doi.org/10.1093/jas/skac069 | DOI Listing |
Biosensors (Basel)
January 2025
School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
G-quadruplex (G4) DNAzymes with peroxidase activities hold potential for applications in biosensing. While these nanozymes are easy to assemble, they are not as efficient as natural peroxidase enzymes. Several approaches are being used to better understand the structural basis of their reaction mechanisms, with a view to designing constructs with improved catalytic activities.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China. Electronic address:
Despite the diverse industrial applications and health benefits of plant gums, significant variations in quality among different types remain underexplored. This study investigates the differences in antioxidant activity, mineral elements, and metabolic profiles among peach, acacia, and karaya gums. Our findings reveal significant differences in total phenol content, with peach gum exhibiting the highest (20.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
Background: Placental syndrome, mainly composed of preeclampsia and fetal growth restriction, has an impact on the health of mother and baby dyads. While impaired placentation is central to their pathophysiology, the underlying molecular mechanisms remain incompletely understood. This study investigates the association between placental syndrome and metabolic alterations in 1-deoxysphingolipids (1-deoxySLs) and polyamines, along with their regulatory enzymes.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.
Cotton fibers are single cells that develop from the epidermal cells in the outer integument of developing seeds. The processes regulating fiber cell development have been extensively studied; however, the spatiotemporal transcriptome and metabolome profiles during the early stages of fiber development remain largely unknown. In this study, we profile the dynamics of transcriptome and metabolome during the early stages of cotton fiber cell development using a combination of spatial transcriptomic, single-cell transcriptomic, and spatial metabolomic analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!