While it has been recently demonstrated that both iron (Fe) and manganese (Mn) control Southern Ocean (SO) plankton biomass, how in particular Mn governs phytoplankton species composition remains yet unclear. This study, for the first time, highlights the importance of Mn next to Fe for growth of two key SO phytoplankton groups at two locations in the Drake Passage (West and East). Even though the bulk parameter chlorophyll a indicated Fe availability as main driver of both phytoplankton assemblages, the flow cytometric and microscopic analysis revealed FeMn co-limitation of a key phytoplankton group at each location: at West the dominant diatom Fragilariopsis and one subgroup of picoeukaryotes, which numerically dominated the East community. Hence, the limitation by both Fe and Mn and their divergent requirements among phytoplankton species and groups can be a key factor for shaping SO phytoplankton community structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897415 | PMC |
http://dx.doi.org/10.1038/s42003-022-03148-8 | DOI Listing |
Sci Rep
January 2025
Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.
The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry, University of Zurich, Zurich, Switzerland.
Iron and manganese are essential nutrients whose transport across membranes is catalyzed by members of the SLC11 family. In humans, this protein family contains two paralogs, the ubiquitously expressed DMT1, which is involved in the uptake and distribution of Fe and Mn, and NRAMP1, which participates in the resistance against infections and nutrient recycling. Despite previous studies contributing to our mechanistic understanding of the family, the structures of human SLC11 proteins and their relationship to functional properties have remained elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China.
The aqueous iron ion batteries (AIIBs) are an attractive option for large-scale energy storage applications. However, the inadequate plating and stripping of Fe ions underscore the need to explore more suitable cathode materials. Herein, we optimize the structure of tunnel-like VO nanosheets by introducing Mn ion intercalation as a cathode material to enhance their performance in AIIBs.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany.
Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!