Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that presents with diverse and complex clinical features and involves multiple human systems. TSC-related neurological abnormalities and organ dysfunction greatly affect the quality of life and can even result in death in patients with TSC. It is widely accepted that most TSC-related clinical manifestations are associated with hyperactivation of the mammalian target of rapamycin (mTOR) pathway caused by loss‑of‑function mutations in TSC1 or TSC2. Remarkable progress in basic and translational research has led to encouraging clinical advances. Although mTOR inhibitors (rapamycin/everolimus) demonstrate great potential in TSC management, two major concerns hamper their generalized application. One is the frequent manifestation of adverse events, such as stomatitis, infections, and menstrual disorders; and the other is the poor response in certain patients. Thus, indicators are required to effectively predict the efficacy of mTOR inhibitors. Herein, we have summarized the current utilization of mTOR inhibitors in the treatment of TSC and focused on their efficacy and safety, in an attempt to provide a reference to guide the treatment of TSC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895788 | PMC |
http://dx.doi.org/10.1186/s13023-022-02266-0 | DOI Listing |
Int J Oncol
February 2025
Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands.
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.
View Article and Find Full Text PDFNat Commun
January 2025
NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.
Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.
Gynecol Oncol
January 2025
Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Introduction: Molecular alterations in the PI3K/AKT and Ras/Raf/MEK/ERK pathways are frequently observed in patients with endometrial cancers. However, mTOR inhibitors, such as temsirolimus, have modest clinical benefits. In addition to inducing metabolic changes in cells, metformin activates AMPK, which in turn inhibits the mTOR pathway.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan.
The role of RGPR-p117, a transcription factor, which binds to the TTGGC motif in the promoter region of the regucalcin gene, in cell regulation remains to be investigated. This study elucidated whether RGPR-p117 regulates the activity of triple-negative human breast cancer MDA-MB-231 cells in vitro. The wild-type and RGPR-p117-overexpressing cancer cells were cultured in DMEM supplemented with fetal bovine serum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!