Background: Separation of biotic and abiotic impacts on species diversity distribution patterns across a significant climatic gradient is a challenge in the study of diversity maintenance mechanisms. The basic task is to reconcile scale-dependent effects of abiotic and biotic processes on species distribution models. Here, we used a hierarchical modeling method to detect the host specificities of bark beetles (Scolytinae and Platypodinae) with their dependent tree communities across a steep climatic gradient, which was embedded within a relatively homogenous spatial niche.

Results: Species turnover of both trees and bark beetles have an opposite pattern along the climatic proxy (represented by the elevation gradients) at the regional scale, but not at local spatial scales. This pattern confirmed the hypothesis wherein emphasis was on influences of macro-climate on local biotic interactions between trees and hosted bark beetle communities, whereas local biotic relations, represented by host specificity dependence, were regionally conserved.

Conclusions: At a confined spatial scale, cross-taxa comparisons of β-diversity highlighted the importance of simultaneous impacts from both extrinsic factors related to geography and environment, and intrinsic factors related to organism characteristics. The effects of tree abundance and phylogeny diversity on bark beetle diversity were, to a large extent, indirect, operating via changes in bark beetle abundance through spatial and temporal dynamics of resources distribution. Tree host dependence, which was considered and represented by host specificities, plays a minor role on the hosted beetle community in this concealed wood decomposing interacting system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895613PMC
http://dx.doi.org/10.1186/s12983-022-00455-yDOI Listing

Publication Analysis

Top Keywords

bark beetles
12
bark beetle
12
scolytinae platypodinae
8
climatic gradient
8
host specificities
8
local biotic
8
represented host
8
bark
6
patterns co-occurrence
4
co-occurrence variation
4

Similar Publications

The non-native wood-boring and symbiotic fungus-culturing Xylosandrus germanus (Blandford) was first reported in New York apple orchards in 2013. Trapping surveys have been conducted annually since to assist growers in timely applications of preventative control measures. In 2021, a similar-looking introduced species, Anisandrus maiche (Kurentsov), was identified in traps in west central New York.

View Article and Find Full Text PDF

Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e.

View Article and Find Full Text PDF

Background: Ips typographus (L.), the eight-toothed spruce bark beetle (Coleoptera: Scolytinae), has devastated European Norway spruce (Picea abies) forests in recent years. For the first time, I.

View Article and Find Full Text PDF

Subcortical beetle communities interact with a wide range of semiochemicals released from different sources, including trees, fungi, and bark beetle pheromones. While the attraction of bark beetles, their insect predators, and competitors to bark beetle pheromones is commonly studied, the attraction of these beetle communities to other sources of semiochemicals remains poorly understood. We tested the attraction of bark and wood-boring beetles and their predators to host stress volatiles, fungal volatiles, and a mountain pine beetle lure in the field.

View Article and Find Full Text PDF

, a New Genus of the Tarsonemid Tribe Pseudotarsonemoidini (Acari: Heterostigmatina) from Mexico.

Insects

January 2025

Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.

A new genus for the tribe Pseudotarsonemoidini of the family Tarsonemidae is established in order to accommodate undescribed mites associated with bark beetles in Mexico. The new, monotypic genus , with the type species being diagnostically and phylogenetically closest to the derived - cluster of the Pseudotarsonemoidini, possesses an intermediate position between these two genera. Details of the morphology related to its genus-level affiliation, primarily tibiotarsal I claw and leg setation, are compared in the context of the other genera of the tribe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!