Active microbial metabolites study on antitussive and expectorant effects and metabolic mechanisms of platycosides fraction of Platycodonis Radix.

J Chromatogr B Analyt Technol Biomed Life Sci

Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.

Published: April 2022

A new method involving gut microbiota biotransformation, spectrum-effect relationship analysis and metabolomics analysis was developed to study the antitussive and expectorant microbial metabolites of platycosides fraction (MPFs) of Platycodonis Radix. Furthermore, their possible metabolic mechanisms were studied for the first time. The findings showed that the antitussive and expectorant effects of the platycosides fraction (PF) were significantly enhanced by the gut microbiota biotransformation. 11 active antitussive microbial metabolites and 12 active expectorant microbial metabolites, which shared 8 components, were successfully screened out via spectrum-effect relationship analysis. The prototypes of the active microbial metabolites could be reversely traced according to the gut microbiota biotransformation pathways. It was found out that one platycoside could produce several active microbial metabolites and several different platycosides could produce the same active microbial metabolite. In addition, the metabolomics analysis showed that both the PF and its active microbial metabolites could regulate the same metabolomic pathways of Linoleic acid metabolism, Arachidonic acid metabolism and Glycerophospholipid metabolism to exert antitussive activity, and regulate the same metabolomic pathway of Arachidonic acid metabolism to exert expectorant activity. These findings suggested the microbial metabolites may be the active forms of the platycosides. Overall, the proposed approach was useful in screening the active microbial metabolites; this work explained the in vivo antitussive and expectorant metabolic mechanisms of multi-constituents, multi-targets and synergistic effects of PF of Platycodonis Radix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2022.123171DOI Listing

Publication Analysis

Top Keywords

microbial metabolites
36
active microbial
24
antitussive expectorant
16
metabolic mechanisms
12
platycosides fraction
12
platycodonis radix
12
gut microbiota
12
microbiota biotransformation
12
acid metabolism
12
active
9

Similar Publications

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Microglia are dominant immune cells residing in the brain that regulate brain homeostasis and T-cell responses. An important immune function of microglia involves presenting microbial antigens to mucosal-associated invariant T (MAIT) cells; MAIT cells recognize microbial vitamin B-derived metabolites presented by the MHC class I-like molecule, MR1. Our recent findings highlighted a detrimental role for the MR1/MAIT cell axis in Alzheimer's disease (AD) using the 5XFAD mouse model.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), changes in intestinal microbiota and systemic inflammation are concomitant with neuroinflammation and cognitive decline. This has led to the theory of microbial communities or infections as being causative in the development of neuroinflammation and immunosenescence seen in AD. Our research has demonstrated a decreased taxonomic diversity and an increased abundance of pathobionts in the gut of AD patients (Haran, mBio 2019), which is sufficient to promote amyloid and tau deposition in a mouse model (Chen, Gut 2023).

View Article and Find Full Text PDF

Background: Studies using Alzheimer's disease (AD) models suggest that gut bacteria contribute to amyloid pathology and systemic inflammation. Further, gut-derived metabolites serve critical roles in regulating cholesterol, blood-brain barrier permeability, neuroinflammation, and circadian rhythms. Recent studies from the Alzheimer's Disease Neuroimaging Initiative have shown that serum-based gut-derived metabolites are associated with AD biomarkers and cognitive impairment.

View Article and Find Full Text PDF

Sleep disturbances are increasingly prevalent, significantly impacting physical and mental health. Recent research reveals a bidirectional relationship between gut microbiota and sleep, mediated through the microbiota-gut-brain axis. This review examines the role of gut microbiota in sleep physiology and explores how biotics, including probiotics, prebiotics, synbiotics, postbiotics, and fermented foods, can enhance sleep quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!