Purpose: Sonic hedgehog (SHH) signaling pathway in oxidative stress condition has been acknowledged as a key trigger for angiogenesis and collateral vessel growth in the ischemic brain, and it exerts a protective effect on neuronal cells during oxidative stress.
Methods: A total of sixty patients (n = 30 good collateral profile and n = 30 poor collateral profile) diagnosed with acute cerebral ischemia were enrolled in this study. qRT-PCR was performed to analyze the expression levels of SHH, Gli1, and superoxide dismutase (SOD), genes. Also, the serum levels of oxidative stress markers were determined in experimental groups.
Results: The expression levels of SHH and Gli1 genes were significantly (p < 0.05) higher in stroke patients with good collateral circulation compared with those with poor collateral circulation, while SOD gene expression was similar between two groups (p > 0.05). A significantly positive correlation was found between the gene expression of SHH and Gli1 (r = 0.604, p < 0.001), SOD and Gli1 (r = 0.372, p < 0.003) genes. Our findings showed that the serum level of total antioxidant capacity (TAC) and Glutathione (GSH) and SOD enzyme activity was significantly (p < 0.05) increased, while serum total oxidant status (TOS) and malondialdehyde (MDA) levels were significantly (p < 0.05) decreased in patients with good collateral circulation as compared with those with poor collateral circulation.
Conclusion: Our observations shed light on the association of the SHH/Gli1 signaling pathway with cerebral collateral vessel development following ischemia. Oxidative stress in stroke patients with poor collateral circulation may result in the overexpression of SHH/Gli1 signaling pathway which possibly contribute to oxidative stress attenuation, as well as modulate angiogenesis and collateral vessels development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2022.106408 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!