The development of multicomponent materials is the most efficient and successful way for creating advanced multifunctional catalysts. Herein, the bimetal FeCo nanoarrays enclosed N-CNTs have a high surface on carbon cloth support, which promotes efficient electron transport and prevents nanoparticle aggregation. Taking advantage of the high-level use of active material and fast charge transfer, the developed electrocatalyst exhibits excellent multifunctional electrocatalyst such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The N-CNTs@MOF FeCo nanoarrays @CC exhibit higher activity than reference catalysts including MOF FeCo nanoarrays@CC, FeCo nanoarrays@CC, and CC. Interestingly, the synthesized multifunctional catalyst, which serves as the air electrode in zinc-air batteries with liquid electrolytes as well as solid-state gel electrolytes possesses outstanding charging-discharge performance and long service life. This study provides enormous potential for the real implementation of portable, even wearable, and efficient rechargeable batteries in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.02.097 | DOI Listing |
Mikrochim Acta
December 2024
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
The detection of 4-chloro-2-methylphenoxyacetic acid (CMPA) herbicide is crucial due to the potential health risks linked to exposure through drinking water, air, and food, which may adversely affect liver and kidney functions. To address this environmental concern and promote sustainable agriculture, a sensitive carbon paste sensor incorporating a composite material was developed. The composite sensor is based on porous cobalt-1,4-benzenedicarboxylate metal-organic framework and exfoliated montmorillonite nanolayers (Co-OF/MMt).
View Article and Find Full Text PDFChempluschem
December 2024
Qinghai University, Mechanical Engineering, Qinghai,China, 810016, Qinghai province, CHINA.
Due to the high catalytic activity and stability for oxygen reduction reaction, N-coordinated Fe-Cu dual-metal doped carbon material (FeCu-N-C) is considered to be one of the promising electrode materials for metal-air battery and fuel cells. Herein, FeCu-N-C dual-metal catalysts was synthesized by an adsorption-calcination strategy. The prepared FeCu-N-C exhibited high activity and stability both in alkaline and acidic media.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Fudan University, Department of Chemistry, Room 223, Laboratory of Advanced Materials Building, Songhu Road 2005, Shanghai, Shanghai, CHINA.
Sn redox chemistry in aqueous acidic electrolyte was characterized with high reversibility and kinetics, which is considered as competitive anode material for aqueous batteries. Unfortunately, divalent Sn2+ is unstable in aqueous electrolyte. It was revealed that Sn2+ is easy to be oxidized to tetravalent Sn4+ by dissolved oxygen and then forms precipitate through hydrolysis process, leading to serious performance decay.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.
This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.
View Article and Find Full Text PDFChemosphere
December 2024
BRIC-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India; BRIC- Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana, India. Electronic address:
Endosulfan (Ed), a widely used organochlorine pesticide, is classified as a persistent organic pollutant (POP). Its long half-life, resistance to degradation, and bioaccumulation in the food chain contaminates soil, water, and air. Such widespread environmental damage triggers monitoring its levels for ensuring compliance with safety regulations and protecting public health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!