The enteric nervous system (ENS) regulates gastrointestinal motility, secretion, and absorption. Developmental ENS dysplasia causes intestinal ganglion dysfunction, including Hirschsprung's disease. Given their potential ability to replenish insufficient neurons, transplantation of enteric neural cells provides the prospect of a cure. In this study, we used an ex vivo mouse colon transplant model to demonstrate that treatment with collagenase and fibronectin altered the migration of transplanted cells from the direction of the colon surface toward the lumen. Collagenase-treated colons exhibited enhanced expression of type III and VI collagens, which inhibited fibronectin-induced enteric neural crest cell (ENCC) migration. Invasion of neurospheres into colon was dependent on preoperative treatment of recipient colon with collagenase and fibronectin, which enhanced neurosphere motility towards the direction of colon lumen. Infiltration of transplanted ENCCs into the colon increased proportionally to the degree of dedifferentiation of surrounding smooth muscle cells, which was induced in a neurosphere-dependent manner in collagenase-treated colon. Furthermore, induction of GDNF expression, a Ret ligand that promotes enteric neural cell migration, was observed in treated colons. Our results suggest that the environment provided by the extracellular matrix of the colon surface affects the direction of transplanted ENCC migration. Moreover, these findings demonstrating that ENCCs can be accepted by the recipient colon will help to refine current strategies for cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.02.094DOI Listing

Publication Analysis

Top Keywords

colon surface
12
recipient colon
12
collagenase fibronectin
12
enteric neural
12
colon
11
neural crest
8
direction colon
8
encc migration
8
transplanted
4
transplanted neural
4

Similar Publications

The development of murine bone marrow-derived mast cells expressing functional human MRGPRX2 for and studies.

Front Immunol

January 2025

Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Introduction: A subtype of human mast cells (MCs) found in the skin and to a lesser extent in the lung and gut express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR-X2 (MRGPRX2, mouse counterpart MrgprB2). In addition to drug-induced pseudoallergy and cutaneous disorders, MrgprB2 contributes to ulcerative colitis, IgE-mediated lung inflammation and systemic anaphylaxis. Interestingly, most agonists activate MRGPRX2 with higher potency than MrgprB2.

View Article and Find Full Text PDF

Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies.

View Article and Find Full Text PDF

The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential.

View Article and Find Full Text PDF

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

Article Synopsis
  • The oil and gas industry is grappling with climate change and resource depletion, prompting a shift towards enhanced recovery methods like polymer flooding, which boasts higher recovery rates and lower emissions.
  • Existing physical models for predicting polymer flooding outcomes need improvement, particularly in accurately modeling the flow behavior of polymer solutions.
  • The new PAMA-T model expands the original PAMA technique to make it applicable across a wider temperature range (298-343 K), enabling better predictions of rheological properties using minimal data input from viscosity measurements.
View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!