Severe skin injuries are hard to repair and susceptible to bacterial infection. Development of a versatile antimicrobial anti-inflammatory hydrogel dressing that eliminates concern over antibiotic resistance is urgently needed but remains an elusive goal. Our research, described herein, the design and fabrication of a new family of supramolecular hydrogels based on hydroxypropyl chitosan (HPCS) and poly(N-isopropylacrylamide) (PNIPAM) may prove to be that goal. Employing the reversible cross-linking by β-cyclodextrin (β-CD) and adamantyl (AD) pre-assembly, the hydrogels can be formed in a facile one-pot method. Additionally, the structure and performance of the hydrogels can be controlled by a simple adjustment of the AD content. The obtained hydrogels exhibit an abundance of desired properties; they are injectable, thermosensitive, highly ductile, self-healable (will self-heal recurring damage to the hydrogel bandage of up to several millimeters wide), biocompatible, and have antimicrobial activity against Staphylococcus aureus when infused with dipotassium glycyrrhizinate (DG). Using a mouse full-thickness skin defect model, in vivo wound healing evaluations revealed that the DG-loaded hydrogels (HP-3/DG10) applied to the wound resulted in rapid wound closure. The hydrogels promoted efficient tissue remolding, collagen deposition, decreased inflammation and performed better than the control groups of commercial Tegaderm film and 3M dressing. Given their multifunctionality and in vivo efficacy, the DG-loaded HP hydrogels hold great potential as a wound dressing for full-thickness skin repair. STATEMENT OF SIGNIFICANCE: Injectable hydrogels are receiving increasing attention as an ideal wound dressing. To the best of our knowledge, however, injectable and wide-crack self-healing hydrogel dressings have been hardly studied. A versatile antimicrobial hydrogel without drug resistance or cytotoxicity is also highly required. Therefore, in the present study, we constructed injectable thermosensitive and wide-crack self-healing hydrogels with antibacterial and anti-inflammatory properties. These hydrogels were developed through novel strategies of the wide-crack self-healing design and the loading of the bioactive antibacterial and anti-inflammatory agent dipotassium glycyrrhizinate. The simple preparation method and multifunctionality of the studied hydrogel composites may provide important insights for the development of future biomaterials for wound dressings and other biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2022.02.041 | DOI Listing |
Acta Biomater
April 2022
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Severe skin injuries are hard to repair and susceptible to bacterial infection. Development of a versatile antimicrobial anti-inflammatory hydrogel dressing that eliminates concern over antibiotic resistance is urgently needed but remains an elusive goal. Our research, described herein, the design and fabrication of a new family of supramolecular hydrogels based on hydroxypropyl chitosan (HPCS) and poly(N-isopropylacrylamide) (PNIPAM) may prove to be that goal.
View Article and Find Full Text PDFSci Rep
September 2018
Magnel Laboratory for Concrete Research, Faculty of Engineering and Architecture, Ghent University, B-9052, Ghent, Belgium.
Chemicals and synthetic coatings are widely used to protect steel against corrosion. Bio-based corrosion inhibition strategies can be an alternative in the arising bioeconomy era. To maintain the good state of steel reinforcement in cracked concrete, microbe-based self-healing cementitious composites (MSCC) have been developed.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
August 2015
Objective: To study the function and effectiveness of self-manufacture osteotomy guide device in osteotomy.
Methods: A guide device was manufactured, which could guide the drill and osteotome. Sixty femoral moulds which cover with bubble were used as human femurs, and a 3 cm long, 1 cm wide crack was made in the femoral moulds supracondylar to imitate operation incision.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!